首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High resolution infrared spectra of nitric acid have been recorded in the first OH overtone region under jet-cooled conditions using a sequential IR-UV excitation method. Vibrational bands observed at 6933.39(3), 6938.75(4), and 6951.985(3) cm(-1) (origins) with relative intensities of 0.42(1), 0.38(1), and 0.20(1) are attributed to strongly mixed states involved in a Fermi resonance. A vibrational deperturbation analysis suggests that the optically bright OH overtone stretch (2nu1) at 6939.2(1) cm(-1) is coupled directly to the nu1 + 2nu2 state at 6946.4(1) cm(-1) and indirectly to the 3nu2 + nu3 + nu7 state at 6938.5(1) cm(-1). Both the identity of the zero-order states and the indirect coupling scheme are deduced from complementary CCSD(T) calculations in conjunction with second-order vibrational perturbation theory. The deperturbation analysis also yields the experimental coupling between 2nu1 and nu1 + 2nu2 of -6.9(1) cm(-1), and that between the two dark states of +5.0(1) cm(-1). The calculated vibrational energies and couplings are in near quantitative agreement with experimentally derived values except for a predicted twofold stronger coupling of 2nu1 to nu1 + 2nu2. Weaker coupling of the strongly mixed states to a dense background of vibrational states via intramolecular vibrational energy redistribution is evident from the experimental linewidths of 0.08 and 0.25 cm(-1) for the higher energy and two overlapping lower energy bands, respectively. A comprehensive rotational analysis of the higher energy band yields spectroscopic parameters and the direction of the OH overtone transition dipole moment.  相似文献   

2.
Weak vibrational bands of (16)O(3) could be detected in the 5850-7030 cm(-1) spectral region by CW-cavity ring down spectroscopy using a set of fibered DFB diode lasers. As a result of the high sensitivity (noise equivalent absorption alpha(min) approximately 3 x 10(-10) cm(-1)), bands reaching a total of 16 upper vibrational states have been previously reported in selected spectral regions. In the present report, the analysis of the whole investigated region is completed by new recordings in three spectral regions which have allowed: (i) a refined analysis of the nu(1) + 3nu(2) + 3nu(3) band from new spectra in the 5850-5900 cm(-1) region; (ii) an important extension of the assignments of the 2nu(1)+5nu(3) and 4nu(1) + 2nu(2) + nu(3) bands in the 6500-6600 cm(-1) region, previously recorded by frequency modulation diode laser spectroscopy. The rovibrational assignments of the weak 4nu(1) + 2nu(2) + nu(3) band were fully confirmed by the new observation of the 4nu(1) + 2nu(2) + nu(3)- nu(2) hot band near 5866.9 cm(-1) reaching the same upper state; (iii) the observation and modelling of three A-type bands at 6895.51, 6981.87 and 6990.07 cm(-1) corresponding to the highest excited vibrational bands of ozone detected so far at high resolution. The upper vibrational states were assigned by comparison of their energy values with calculated values obtained from the ground state potential energy surface of (16)O(3). The vibrational mixing and consequently the ambiguities in the vibrational labelling are discussed. For each band or set of interacting bands, the spectroscopic parameters were determined from a fit of the corresponding line positions in the frame of the effective Hamiltonian (EH) model. A set of selected absolute line intensities was measured and used to derive the parameters of the effective transition moment operator. The exhaustive review of the previous observations gathered with the present results is presented and discussed. It leads to a total number of 3863 energy levels belonging to 21 vibrational states and corresponding to 7315 transitions. In the considered spectral region corresponding to up to 82% of the dissociation energy, the increasing importance of the "dark" states is illustrated by the occurrence of frequent rovibrational perturbations and the observation of many weak lines still unassigned.  相似文献   

3.
We have measured the vibrational spectra of large ammonia (NH3)n clusters by photofragment spectroscopy in the spectral range from 3150 to 3450 cm(-1) for the average sizes n = 29, 80, 212, 447, and 989 and by depletion spectroscopy for n=8. The spectra are dominated by peaks around 3385 cm(-1) which are attributed to the asymmetric nu3 NH-stretch mode. Two further peaks between 3200 and 3260 cm(-1) have about equal intensity for n = 8 and 29, but only about 0.40 of the intensity of the nu3 peak for the larger sizes. The spectra for the smallest and largest size agree with those obtained by Fourier transform infrared spectroscopy in slit jet expansion and collision cells, respectively. By accompanying calculation we demonstrate that the energetic order of the spectral features originating from the bending overtone 2nu4 and the symmetric NH-stretch nu1 in the range from 3150 to 3450 cm(-1) is changed between n = 10 and 100, while the asymmetric NH-stretch nu3 only exhibits a moderate redshift. The reason is the coupling of the ground state modes to the overtones.  相似文献   

4.
The absorption spectra of the (CH3)2O...HF complex in the range of 4200-2800 cm(-1) were recorded in the gas phase at a resolutions of 0.1 cm(-1) at T = 190-340 K. The spectra obtained were used to analyze their structure and to determine the temperature dependencies of the first and second spectral moments. The band shape of the (CH3)2O...HF complex in the region of the nu1(HF) stretching mode was reconstructed nonempirically. The nu1 and nu3 stretching vibrations and four bending vibrations responsible for the formation of the band shape were considered. The equilibrium geometry and the 1D-4D potential energy surfaces were calculated at the MP2 6-311++G(2d,2p) level with the basis set superposition error taken into account. On the basis of these surfaces, a number of one- and multidimensional anharmonic vibrational problems were solved by the variational method. Solutions of auxiliary 1D and 2D vibrational problems showed the strong coupling between the modes. The energy levels, transition frequencies and intensities, and the rotational constants for the combining vibrational states necessary to reconstruct the spectrum were obtained from solutions of the 4D problem (nu1, nu3, nu5(B2), nu6(B2)) and the 2D problem (nu5(B1), nu6(B1)). The theoretical spectra reconstructed for different temperatures as a superposition of rovibrational bands associated with the fundamental, hot, sum, and difference transitions reproduce the shape and separate spectral features of the experimental spectra. The calculated value of the nu1 frequency is 3424 cm(-1). Along with the frequencies and absolute intensities, the calculation yields the vibrationally averaged values of the separation between the centers of mass of the monomers Rc.-of-m., R(O...F), and r(HF) for different states. In particular, upon excitation of the nu1 mode, Rc.-of-m. becomes shorter by 0.0861 A, and r(HF) becomes longer by 0.0474 A.  相似文献   

5.
We have measured the OH- and OD-stretching fundamental and overtone spectra of phenol and its deuterated isotopomers under jet-cooled conditions using nonresonant ionization detection spectroscopy and vapor-phase infrared (IR) and near-infrared (NIR) spectra at room temperature using conventional and photoacoustic spectroscopy. The OH- and OD-stretching bands in the jet-cooled spectra are about 1-10 cm(-1) wide and generally show a few Lorentzian shaped peaks. The bands in the room-temperature spectra have widths of 20-30 cm(-1) and display clear rotational profiles. The band profiles in the jet-cooled spectra arise mostly from nonstatistical intramolecular vibrational redistribution (IVR) with specific coupling to "doorway" states, which are likely to involve CH- and CD-stretching vibrations. The transition dipole moment that determines the rotational structure is found to rotate significantly from the fundamental to the third overtone and is not directed along the OH(D) bond. We use these calculated transition dipole moments to simulate the rotational structure. We determine the rotational temperature in the jet-cooled spectra to be about 0.5 K. Anharmonic oscillator local mode calculations of frequencies and intensities of the OH- and OD-stretching transitions are compared with our measured results. The calculated intensities are in good agreement with the absolute intensities obtained from conventional spectroscopy and with the relative intensities obtained from the room-temperature laser spectroscopy.  相似文献   

6.
The anharmonic vibrational frequencies of FHF(-) were computed by the vibrational self-consistent-field, configuration-interaction, and second-order perturbation methods with a multiresolution composite potential energy surface generated by the electronic coupled-cluster method with various basis sets. Anharmonic vibrational averaging was performed for the bond length and nuclear magnetic resonance indirect spin-spin coupling constants, where the latter computed by the equation-of-motion coupled-cluster method. The calculations placed the vibrational frequencies at 580 (nu(1)), 1292 (nu(2)), 1313 (nu(3)), 1837 (nu(1) + nu(3)), and 1864 cm(-1) (nu(1) + nu(2)), the zero-point H-F bond length (r(0)) at 1.1539 A, the zero-point one-bond spin-spin coupling constant [(1)J(0)(HF)] at 124 Hz, and the bond dissociation energy (D(0)) at 43.3 kcal/mol. They agreed excellently with the corresponding experimental values: nu(1) = 583 cm(-1), nu(2) = 1286 cm(-1), nu(3) = 1331 cm(-1), nu(1) + nu(3) = 1849 cm(-1), nu(1) + nu(2) = 1858 cm(-1), r(0) = 1.1522 A, (1)J(0)(HF) = 124+/-3 Hz, and D(0) = 44.4+/-1.6 kcal/mol. The vibrationally averaged bond lengths matched closely the experimental values of five excited vibrational states, furnishing a highly dependable basis for correct band assignments. An adiabatic separation of high- (nu(3)) and low-frequency (nu(1)) stretching modes was examined and found to explain semiquantitatively the appearance of a nu(1) progression on nu(3). Our calculations predicted a value of 186 Hz for experimentally inaccessible (2)J(0)(FF).  相似文献   

7.
A quasi-degenerate perturbation method with vibrational self-consistent field (VSCF) reference wavefunction is developed. It simultaneously accounts for strong anharmonic mode-mode coupling among a few states (static correlation) by a configuration interaction theory and for weak coupling with a vast number of the other states (dynamic correlation) by a perturbation theory. A general formula is derived based on the van Vleck perturbation theory. An algorithm that selects a compact set of the most important VSCF configurations which contribute to the static correlation is proposed and a scheme to limit the number of configurations considered for dynamic correlation is also implemented. This method reproduces the vibrational frequencies of CO2 and H2CO that are subject to the strongest anharmonic mode-mode coupling within 10 cm(-1) of vibrational configuration interaction results in a computational expense reduced by a factor of one to two orders of magnitude. The method also reproduces the infrared absorption of C6H6 in the CH stretching (nu12) frequency region, in which combination tones nu13nu16 and nu2nu13nu18 appear on account of an intensity borrowing from nu12via the anharmonic coupling.  相似文献   

8.
The Cuban chromites with a spinel structure, FeCr2O4 have been studied using optical absorption and EPR spectroscopy. The spectral features in the electronic spectra are used to map the octahedral and tetrahedral co-ordinated cations. Bands due Cr3+ and Fe3+ ions could be distinguished from UV-vis spectrum. Chromite spectrum shows two spin allowed bands at 17,390 and 23,810 cm(-1) due to Cr3+ in octahedral field and they are assigned to 4A2g(F) --> 4T2g(F) and 4A2g(F) --> 4T1g(F) transitions. This is in conformity with the broad resonance of Cr3+ observed from EPR spectrum at g = 1.903 and a weak signal at g = 3.861 confirms Fe3+ impurity in the mineral. Bands of Fe3+ ion in the optical spectrum at 13,700, 18,870 and 28,570 cm(-1) are attributed to 6A1g(S) --> 4T1g(G), 6A1g(S) --> 4T2g(G) and 6A1g(S) --> 4T2g(P) transitions, respectively. Near-IR reflectance spectroscopy has been used effectively to show intense absorption bands caused by electronic spin allowed d-d transitions of Fe2+ in tetrahedral symmetry, in the region 5000-4000 cm(-1). The high frequency region (7500-6500 cm(-1)) is attributed to the overtones of hydroxyl stretching modes. Correlation between Raman spectral features and mineral chemistry are used to interpret the Raman data. The Raman spectrum of chromite shows three bands in the CrO stretching region at 730, 560 and 445 cm(-1). The most intense peak at 730 cm(-1) is identified as symmetric stretching vibrational mode, A1g(nu1) and the other two minor peaks at 560 and 445 cm(-1) are assigned to F2g(nu4) and E(g)(nu2) modes, respectively. Cation substitution in chromite results various changes both in Raman and IR spectra. In the low-wavenumber region of Raman spectrum a significant band at 250 cm(-1) with a component at 218 cm(-1) is attributed F2g(nu3) mode. The minor peaks at 195, 175, 160 cm(-1) might be due to E(g) and F2g symmetries. Broadening of the peak of A1g mode and shifting of the peak to higher wavenumber observed as a result of increasing the proportion of Al3+O6. The presence of water in the mineral shows bands in the IR spectrum at 3550, 3425, 3295, 1630 and 1455 cm(-1). The vibrational spectrum of chromite gives raise to four frequencies at 985, 770, 710 and 650 cm(-1). The first two frequencies nu1 and nu2 are related to the lattice vibrations of octahedral groups. Due to the influence of tetrahedral bivalent cation, vibrational interactions occur between nu3 and nu4 and hence the low frequency bands, nu3 and nu4 correspond to complex vibrations involving both octahedral and tetrahedral cations simultaneously. Cr3+ in Cuban natural chromites has highest CFSE (20,868 cm(-1)) when compared to other oxide minerals.  相似文献   

9.
We report the first rotationally resolved spectroscopic studies on PH3+(X2A2") using zero kinetic energy photoelectron spectroscopy and coherent VUV radiation. The spectra about 8000 cm(-1) above the ground vibrational state of PH3+(X2A2") have been recorded. We observed the vibrational energy level splittings of PH3+(X2A2") due to the tunneling effect in the inversion (symmetric bending) vibration (nu2+). The energy splitting for the first inversion vibrational state (0+/0-) is 5.8 cm(-1). The inversion vibrational energy levels, rotational constants, and adiabatic ionization energies (IEs) for nu2+ = 0-16 have been determined. The bond angles between the neighboring P-H bonds and the P-H bond lengths are also obtained using the experimentally determined rotational constants. With the increasing of the inversion vibrational excitations (nu2+), the bond lengths (P-H) increase a little and the bond angles (H-P-H) decrease a lot. The inversion vibrational energy levels have also been calculated by using one dimensional potential model and the results are in good agreement with the experimental data for the first several vibrational levels. In addition to inversion vibration, we also observed firstly the other two vibrational modes: the symmetric P-H stretching vibration (nu1+) and the degenerate bending vibration (nu4+). The fundamental frequencies for nu1+ and nu4+ are 2461.6 (+/-2) and 1043.9 (+/-2) cm(-1), respectively. The first IE for PH3 was determined as 79670.9 (+/-1) cm(-1).  相似文献   

10.
11.
State-resolved reactions of CH3D molecules containing both C-H and C-D stretching excitation with Cl atoms provide new vibrational spectroscopy and probe the consumption and disposal of vibrational energy in the reactions. The vibrational action spectra have three different components, the combination of the C-H symmetric stretch and the C-D stretch (nu1 + nu2), the combination of the C-D stretch and the C-H antisymmetric stretch (nu2 + nu4), and the combination of the C-D stretch and the first overtone of the CH3 bend (nu2 + 2nu5). The simulation for the previously unanalyzed (nu2 + nu4) state yields a band center of nu0 = 5215.3 cm(-1), rotational constants of A = 5.223 cm(-1) and B = 3.803 cm(-1), and a Coriolis coupling constant of zeta = 0.084. The reaction dynamics largely follow a spectator picture in which the surviving bond retains its initial vibrational excitation. In at least 80% of the reactive encounters of vibrationally excited CH3D with Cl, cleavage of the C-H bond produces CH2D radicals with an excited C-D stretch, and cleavage of the C-D bond produces CH3 radicals with an excited C-H stretch. Deviations from the spectator picture seem to reflect mixing in the initially prepared eigenstates and, possibly, collisional coupling during the reaction.  相似文献   

12.
A theory for polarized absorption in crystalline oligoacenes is presented, which includes Frenkel exciton coupling, the coupling between Frenkel and charge-transfer (CT) excitons, and the coupling of all neutral and ionic excited states to the dominant ring-breathing vibrational mode. For tetracene, spectra calculated using all Frenkel couplings among the five lowest energy molecular singlet states predict a Davydov splitting (DS) of the lowest energy (0-0) vibronic band of only -32 cm(-1), far smaller than the measured value of 631 cm(-1) and of the wrong sign-a negative sign indicating that the polarizations of the lower and upper Davydov components are reversed from experiment. Inclusion of Frenkel-CT coupling dramatically improves the agreement with experiment, yielding a 0-0 DS of 601 cm(-1) and a nearly quantitative reproduction of the relative spectral intensities of the 0-n vibronic components. Our analysis also shows that CT mixing increases with the size of the oligoacenes. We discuss the implications of these results on exciton dissociation and transport.  相似文献   

13.
Spectra of gas phase HNO3 were collected in the region 2000-8500 cm(-1) using Fourier-transform infrared spectroscopy. This region is dominated by the nu1 O-H stretching mode but also contains many previously unreported combination bands and overtones. This work marks the first observation of Fermi resonance the 2nu1 O-H stretching overtone. Previously unobserved bands were assigned and integrated intensities were obtained. For bands already reported in the literature, comparisons of relative intensities are presented when possible. This work gives a brief discussion on the trends in overtone intensities and on mode mixing in HNO3 in relation to previous experimental and theoretical studies.  相似文献   

14.
We use laser photoacoustic spectroscopy to obtain overtone spectra at three through six quanta of O-H stretch excitation (3nu(OH)-6nu(OH)) for methyl hydroperoxide (MeOOH). Extending the spectral regions beyond our previous work reveals new features that can be attributed to transitions involving torsion about the O-O bond. Experimental spectral profiles (3nu(OH)-6nu(OH)) and cross sections (3nu(OH)-5nu(OH)) at room temperature show a good agreement with the simulated spectra that we obtain from ab initio calculations employing a vibration-torsion model at 298 K. A Birge-Sponer analysis yields experimental values for the O-H stretch frequency (omega=3773+/-15 cm(-1)) and anharmonicity (omegax=94+/-3 cm(-1)). We also detect OH radicals by laser-induced fluorescence and present photodissociation action spectra of MeOOH in the regions of 4nu(OH) and 5nu(OH). While the spectral profile at 5nu(OH) mimics the photoacoustic spectrum, the peak intensity for transitions to torsionally excited states is relatively more intense in the action spectrum at 4nu(OH), reflecting the fact that the 4nu(OH) excitation energy is below the literature dissociation energy (D0=42.6+/-1 kcal mol(-1)) so that features in the action spectrum come from thermally populated excited states. Finally, we use our calculations to assign contributions to individual peaks in the room-temperature spectra and relate our findings to a recent dynamics study in the literature.  相似文献   

15.
Forty three vibronic levels of C2H2+, X 2Pi u, with upsilon4 = 0-6, upsilon5 = 0-3, and K = 0-4, lying at energies of 0-3520 cm(-1) above the zero-point level, have been recorded at rotational resolution. These levels were observed by double resonance, using 1+1' two-color pulsed-field ionization zero-kinetic-energy photoelectron spectroscopy. The intermediate states were single rovibrational levels chosen from the A1Au, 4nu3 (K = 1-2), 5nu3 (K = 1), nu2+4nu3 (K = 0), and 47,206 cm(-1) (K = 1) levels of C2H2. Seven of the trans-bending levels of C2H2+ (upsilon4 = 0-3, K = 0-2) had been reported previously by Pratt et al. [J. Chem. Phys. 99, 6233 (1993)]; our results for these levels agree well with theirs. A full analysis has been carried out, including the Renner-Teller effect and the vibrational anharmonicity for both the trans- and cis-bending vibrations. The rotational structure of the lowest 16 vibronic levels (consisting of the complete set of levels with upsilon4 + upsilon5 < or = 2, except for the unobserved upper (2Pi u component of the 2nu4 overtone) could be fitted by least squares using 16 parameters to give an rms deviation of 0.21 cm(-1). The vibronic coupling parameter epsilon5 (about whose magnitude there has been controversy) was determined to be -0.0273(7). For the higher vibronic levels, an additional parameter, r45, was needed to allow for the Darling-Dennison resonance between the two bending manifolds. Almost all the observed levels of the upsilon4 + upsilon5 = 3 and 4 polyads (about half of the predicted number) could then be assigned. In a final fit to 39 vibronic levels with upsilon4 + upsilon5 < or = 5, an rms deviation of 0.34 cm(-1) was obtained using 20 parameters. An interesting finding is that Hund's spin-coupling cases (a) and (b) both occur in the Sigmau components of the nu4 + 2nu5 combination level. The ionization potential of C2H2 (from the lowest rotational level of the ground state to the lowest rotational level of the cation) is found to be 91,953.77 +/- 0.09 cm(-1) (3sigma).  相似文献   

16.
Local mode frequencies, omega, and anharmonicities, omegax, are obtained from the delta upsilon(CH) = 2-7 spectral regions of 1,3,5,7-cyclooctatetraene (COT) and 1,1,1-trichloroethane. In 1,1,1-trichloroethane omega and omega x are used in conjunction with ab initio potential energy surfaces to calculate local mode anharmonicity-torsion coupling terms, delta(omega x), and frequency-torsion coupling terms, delta(omega). Blue-shifting of sterically hindered CH oscillators in 1,1,1-trichloroethane indicates nonbonded, through-space intramolecular interactions with Cl. Multiple, complex Fermi resonances are observed in 1,1,1-trichloroethane and in COT between local mode states and local mode/normal mode combination states. Intensities of vibrational overtone transitions are calculated in the range delta upsilon(CH) = 3-9 using ab initio dipole moment functions and the harmonically coupled anharmonic oscillator (HCAO) model. HCAO intensities are compared to experimental intensities at delta upsilon(CH) = 3.  相似文献   

17.
By preparing ethylene [C2H4(X1Ag)] in selected rotational levels of the nu11(b1u), nu2+nu12(b1u), or nu9(b2u) vibrational state with infrared (IR) laser photoexcitation prior to vacuum ultraviolet (VUV) laser photoionization, we have recorded rotationally resolved pulsed field ionization-photoelectron (PFI-PE) spectra for C2H4+(X2B3u) in the energy region of 0-3000 cm(-1) above the ionization energy (IE) of C2H4(X1Ag). Here, nu2(ag), nu9(b2u), nu11(b1u), and nu12(b1u) represent the C-C stretching, CH2 stretching, CH2 stretching, and CH2 bending modes of C2H4(X1Ag), respectively. The fully rovibrationally resolved spectra have allowed unambiguous symmetry assignments of the observed vibrational bands, which in turn have provided valuable information on the photoionization dynamics of C2H4. The IR-VUV photoionization of C2H4(X1Ag) via the nu11(b1u) or nu2+nu12(b1u) vibrational states is found to predominantly produce vibrational states of C2H4+(X2B3u) with b1u symmetry, which cannot be observed in single-photon VUV-PFI-PE measurements of C2H4(X1Ag). The analysis of the observed IR-VUV-PFI-PE bands has provided the IE(C2H4) = 84,790.2(2) cm(-1) and accurate vibrational frequencies for the nu4+(au)[84.1(2) cm(-1)], nu12+(b1u)[1411.7(2) cm(-1)], nu4+ +nu12+(b1g)[1482.5(2) cm(-1)], nu2+(ag)[1488.3(2) cm(-1)], nu2+ + nu4+(au)[1559.2(2) cm(-1)], 2nu4+ + nu12 +(b1u)[1848.5(2) cm(-1)], 4nu4+ + nu12 +(b1u)[2558.8(2) cm(-1)], nu2+ + nu12 +(b1u)[2872.7(2) cm(-1)], and nu11+(b1u)[2978.7(2) cm(-1)] vibrational states of C2H4+(X2B3u), where nu4+ is the ion torsional state. The IE(C2H4) and the nu4+(au), nu2+(ag), and nu2+ + nu4+ (au) frequencies are in excellent accord with those obtained in previous single-photon VUV-PFI-PE measurements. The other ion vibrational frequencies represent new experimental determinations. We have also performed high-level ab initio anharmonic vibrational frequency calculations for C2H4(X1Ag) and C2H4+(X2B3u) at the CCSD(T)/aug-cc-pVQZ level for guidance in the assignment of the IR-VUV-PFI-PE spectra. All theoretical vibrational frequencies for the neutral and ion, except the ion torsional frequency, are found to agree with experimental vibrational frequencies to better than 1%.  相似文献   

18.
The 2-diazo-5,5-dimethyl-cyclohexane-1,3-dione (3) was synthesized and the FT-IR/Raman spectra were measured with the purpose of obtain a full assignment of the vibrational modes. Singular aspects concerning the -CNN oscillator are discussed in view of two strong bands observed in the region of 2300-2100 cm(-1) in both, Infrared and Raman spectra. The density functional theory (DFT) was used to obtain the geometrical structure and for assisting in the vibrational assignment joint to the traditional normal coordinate analysis (NCA). The observed wavenumbers at 2145 (IR), 2144(R) are assigned as the coupled nu(NN)+nu(CN) vibrational mode with higher participation of the NN stretching. A 2188 cm(-1) (IR) and at 2186 cm(-1) (R) can be assigned as a overtone of one of nu(CC) normal mode or to a combination band of the fundamentals delta(CCH) found at 1169 cm(-1) and the delta (CCN) found at 1017 cm(-1) enhanced by Fermi resonance.  相似文献   

19.
2D NMR方法研究抗癌药物冬凌草乙素的结构与谱线归属   总被引:6,自引:0,他引:6  
用异核化学位移相关谱、远程异核化学位移相关谱和同核化学位移相关谱等现代核磁共振技术对抗癌中草药冬凌草中分离出的抗癌、抗菌有效成分冬凌草乙素分子的~(13)C和~1H化学位移进行了完全归属,为冬凌草乙素分子溶液中的三维空间结构研究提供了可靠的结构参数。  相似文献   

20.
A detailed analysis of the high resolution infrared emission spectra of gaseous ZnH2 and ZnD2 in the 800-2200 cm(-1) spectral range is presented. The nu3 antisymmetric stretching fundamental bands of 64ZnH2, 66ZnH2, 67ZnH2, 68ZnH2, 64ZnD2, 66ZnD2 and 68ZnD2, as well as several hot bands involving nu1, nu2 and nu3 were rotationally analyzed, and spectroscopic constants were obtained. Rotational l-type doubling and l-type resonance, local perturbations, and Fermi resonances were observed in the vibration-rotation bands of both ZnH2 and ZnD2, and equilibrium vibrational frequencies (omega1, omega2 and omega3) were estimated. Using the rotational constants of the 000, 100, 01(1)0 and 001 vibrational levels, the equilibrium rotational constants (B(e)) of 64ZnH2 and 64ZnD2 were determined to be 3.600 269(31) cm(-1) and 1.801 985(25) cm(-1), respectively, and the associated equilibrium bond lengths (r(e)) are 1.524 13(1) angstroms and 1.523 94(1) angstroms, respectively. The difference between the r(e) values of 64ZnH2 and 64ZnD2 is about 0.01%, and is mainly due to the breakdown of the Born-Oppenheimer approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号