首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zdetsis AD 《Inorganic chemistry》2008,47(19):8823-8829
The aromatic, bonding, and structural characteristics of the Si 4C 2H 2-C 2B 4H 6, Si 2C 4H 4-C 4B 2H 6, and other Si n C 2H 2-C 2B n H n+2 ( n = 1, 2, 3, 5) isovalent pairs are studied using density functional theory (DFT) and coupled cluster methods to fully illustrate the homology of the two species. This homology, which is based on the replacement of the carborane B-H units by isovalent Si atoms, is extended to all three characteristics (structural, electronic, and aromatic) and includes all three lowest-energy structures of the isovalent pairs. This type of "boron connection", which has been tested for silicon clusters recently, seems to be a valid and extremely useful concept. For the aromatic properties of the Si n C 2H 2-C 2B n H n+2 species, expressed through the nucleus independent chemical shifts (NICS), a strange odd-even effect with respect to the number of Si atoms is observed which seems rather difficult to explain. To help possible future identification and characterization of the Si n C 2H 2 clusters, their infrared, Raman, and optical excitation spectra are calculated within the framework of DFT, using the 6-311+G(2d, p) basis set. It is expected that the present results would facilitate the exploitation of the well-known carborane and metallacarborane chemical properties and applications for the design and development of novel silicon-carbon-based composite materials.  相似文献   

2.
Electron correlation effects associated with the dangling bond surface states of Si(111)-5×5, Si(111)-7×7 and Sn/Ge(111)-3×3 are analyzed. In all the cases, extensive LDA-calculations are performed and effective two-dimensional Hamiltonians are deduced. Our analysis of these Hamiltonians shows that: (a) the Si(111)-5×5 surface states exhibits a metal-insulator transition; (b) the Si(111)-7×7 surface shows important similarities with the Si(111)-5×5 case, but it has a dangling bond surface band having a metallic character; (c) finally, the Sn/Ge(111)-3×3 dangling bond surface bands also shows important correlation effects that are found, however, not to affect the metallic character of the surface bands.  相似文献   

3.
The molecular structures, electron affinities, and dissociation energies of the Si(n)H/Si(n)H- (n = 4-10) species have been examined via five hybrid and pure density functional theory (DFT) methods. The basis set used in this work is of double-zeta plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. The geometries are fully optimized with each DFT method independently. The three different types of neutral-anion energy separations presented in this work are the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). The first Si-H dissociation energies, D(e)(Si(n)H --> Si(n) + H) for neutral Si(n)H and D(e)(Si(n)H- --> Si(n)- + H) for anionic Si(n)H- species, have also been reported. The structures of the ground states of these clusters are traditional H-Si single-bond forms. The ground-state geometries of Si5H, Si6H, Si8H, and Si9H predicted by the DFT methods are different from previous calculations, such as those obtained by Car-Parrinello molecular dynamics and nonorthogonal tight-binding molecular dynamics schemes. The most reliable EA(ad) values obtained at the B3LYP level of theory are 2.59 (Si4H), 2.84 (Si5H), 2.86 (Si6H), 3.19 (Si7H), 3.14 (Si8H), 3.36 (Si9H), and 3.56 (Si10H) eV. The first dissociation energies (Si(n)H --> Si(n) + H) predicted by all of these methods are 2.20-2.29 (Si4H), 2.30-2.83 (Si5H), 2.12-2.41 (Si6H), 1.75-2.03 (Si7H), 2.41-2.72 (Si8H), 1.86-2.11 (Si9H), and 1.92-2.27 (Si10H) eV. For the negatively charged ion clusters (Si(n)H- --> Si(n)- + H), the dissociation energies predicted are 2.56-2.69 (Si4H-), 2.80-3.01 (Si5H-), 2.86-3.06 (Si6H-), 2.80-3.03 (Si7H-), 2.69-2.92 (Si8H-), 2.92-3.18 (Si9H-), and 2.89-3.25 (Si10H-) eV.  相似文献   

4.
Hydrogen-terminated, chlorine-terminated, and alkyl-terminated crystalline Si(111) surfaces have been characterized using high-resolution, soft X-ray photoelectron spectroscopy from a synchrotron radiation source. The H-terminated Si(111) surface displayed a Si 2p(3/2) peak at a binding energy 0.15 eV higher than the bulk Si 2p(3/2) peak. The integrated area of this shifted peak corresponded to one equivalent monolayer, consistent with the assignment of this peak to surficial Si-H moieties. Chlorinated Si surfaces prepared by exposure of H-terminated Si to PCl5 in chlorobenzene exhibited a Si 2p(3/2) peak at a binding energy of 0.83 eV above the bulk Si peak. This higher-binding-energy peak was assigned to Si-Cl species and had an integrated area corresponding to 0.99 of an equivalent monolayer on the Si(111) surface. Little dichloride and no trichloride Si 2p signals were detected on these surfaces. Silicon(111) surfaces alkylated with CnH(2n+1)- (n = 1 or 2) or C6H5CH2- groups were prepared by exposing the Cl-terminated Si surface to an alkylmagnesium halide reagent. Methyl-terminated Si(111) surfaces prepared in this fashion exhibited a Si 2p(3/2) signal at a binding energy of 0.34 eV above the bulk Si 2p(3/2) peak, with an area corresponding to 0.85 of a Si(111) monolayer. Ethyl- and C6H5CH2-terminated Si(111) surfaces showed no evidence of either residual Cl or oxidized Si and exhibited a Si 2p(3/2) peak approximately 0.20 eV higher in energy than the bulk Si 2p(3/2) peak. This feature had an integrated area of approximately 1 monolayer. This positively shifted Si 2p(3/2) peak is consistent with the presence of Si-C and Si-H surface functionalities on such surfaces. The SXPS data indicate that functionalization by the two-step chlorination/alkylation process proceeds cleanly to produce oxide-free Si surfaces terminated with the chosen alkyl group.  相似文献   

5.
This work analyzes stereochemical aspects of olefin polymerization processes mediated by the C1-symmetric constrained geometry catalyst H2Si(ind)(tBuN)TiCH3+ (ind = indenyl), including the role of the cocatalyst/counteranion. The energetics of catalyst activation are first analyzed and shown to compare favorably with experiment. The energetics of heterolytic ion pair separation are next scrutinized, and the effects of solvation environment are assessed. Computed thermodynamic profiles for ethylene insertion at H2Si(ind)(tBuN)TiCH3+ indicate that the kinetics of insertion processes at the H2Si(ind)(tBuN)TiR+ cation can be analyzed in terms of SCF potential energies. We next compare the energetic profile for ethylene insertion at the naked H2Si(ind)(tBuN)TiCH3+ cation with that at the related H2Si(ind)(tBuN)TiCH3+H3CB(C6F5)3- ion pair to understand counterion effects. It is seen that the counterion, although affecting overall catalytic activity, does not significantly influence enchainment stereochemistry or polymer microtacticity. Next, the second ethylene insertion at H2Si(ind)(tBuN)Ti(nC3H7)+H3CB(C6F5)3- is analyzed to evaluate counteranion influence on the propagation barrier. It is found that the ethylene uptake transition state is energetically comparable to the first insertion transition state and that solvation has negligible effects on the energetic profile. These findings justify analysis of the propylene insertion process within the less computationally demanding "naked cation" model. Thus, monomer enchainment at H2Si(ind)(tBuN)TiR+ is analyzed for H2Si(ind)(tBuN)TiCH3+ + propylene (first insertion) and for H2Si(ind)(tBuN)Ti(iC4H6)+ + propylene (second insertion). Data describing the first insertion highlight the sterically dominated regioselection properties of the system with activation energies indicating that olefin insertion regiochemistry is predominantly 1,2 (primary), while the second insertion similarly reflects the catalyst stereoinduction properties, with steric effects introduced by the growing chain (mimicked by an isobutyl group) preferentially favoring insertion pathways that afford isotactic enrichment, in agreement with experiment.  相似文献   

6.
Si(111) surfaces have been functionalized with Si-CC-R species, where R = H or -CH3, using a two-step reaction sequence involving chlorination of H-Si(111) followed by treatment with Na-CC-H or CH3-CC-Na reagents. The resulting surfaces showed no detectable oxidation as evidenced by X-ray photoelectron spectroscopic (XPS) data in the Si 2p region, electrochemical measurements of Si-H oxidation, or infrared spectroscopy. The Si-CC-R-terminated surfaces exhibited a characteristic CC stretch in the infrared at 2179 cm-1, which was strongly polarized perpendicular to the Si(111) surface plane. XPS measurements in the C 1s region showed a low binding energy peak indicative of Si-C bonding, with a coverage that was, within experimental error, identical to that of the CH3-terminated Si(111) surface, which has been shown to fully terminate the Si atop sites on an unreconstructed Si(111) surface. The Si-CC-H-terminated surfaces were further functionalized by exposure to n-C4H9Li followed by exposure to para Br-C6H5-CF3, allowing for introduction of para -C6H5CF3 groups while maintaining the desirable chemical and electrical properties that accompany complete Si-C termination of the atop sites on the Si(111) surface.  相似文献   

7.
Recent experiments on the addition of alkene and alkyne molecules to H-terminated silicon surfaces have provided evidence for a surface chain reaction initiated at isolated Si dangling bonds and involving an intermediate carbon radical state, which, after abstraction of a hydrogen atom from a neighboring Si-H unit, transforms into a stable adsorbed species plus a new Si dangling bond. Using periodic density functional theory (DFT) calculations, together with an efficient method for determining reaction pathways, we have studied the initial steps of this chain reaction for a few different terminal alkynes and alkenes interacting with an isolated Si dangling bond on an otherwise H-saturated Si(111) surface. Calculated minimum energy pathways (MEPs) indicate that the chain mechanism is viable in the case of C(2)H(2), whereas for C(2)H(4) the stabilization of the intermediate state is so small and the barrier for H-abstraction so (relatively) large that the molecule is more likely to desorb than to form a stable adsorbed species. For phenylacetylene and styrene, stabilization of the intermediate state and decrease of the H-abstraction barrier take place. While a stable adsorbed species exists in both cases, the overall heat of adsorption is larger for the alkyne molecules.  相似文献   

8.
The first and second hyperpolarizability beta and gamma are obtained for formaldehyde oligomers (H2CO)n (n = 1-7) using computational methods. We have used the finite field (FF) approach and hyperpolarizability density analysis (HDA) to predict the microscopic first and second nonlinear hyperpolarizability of the formaldehyde oligomers. The spatial contributions of electrons to the hyperpolarizability by using plots of HDA are presented. It has been found from the numerical stability checking of the hyperpolarizability calculations that the calculated values by FF method are more stable than those by HDA approach. The values of beta are zero when n is even as the molecule possesses centrosymmetry, and when n is odd, the differences among beta values are not clear. The gamma values are increased with increase in n.  相似文献   

9.
10.
Identically sized Au clusters are grown on the Si(111)-(7×7) surface by room temperature deposition of Au atoms and subsequent annealing at low-temperature. The topographical images investigated by in situ scanning tunneling microscopy show a bias-dependent feature. The current-voltage properties measured by scanning tunneling spectroscopy indicate some semiconducting characteristics of the Au adsorbed surface, which is attributable to the saturation of Si dangling bonds. These experimental results, combined with the simulated scanning tunneling microscopy images and the first-principles adsorption energy calculations, show that the Au cluster is most likely to have a Au(6)Si(3) structure. In the Au(6)Si(3) cluster, three adsorbed Au atoms replace the three Si center adatoms, forming a hollow triangle, while the replaced Si atoms and other three Au atoms connect into a hexagon locating within the triangle. The formation mechanism of this atomic configuration is intimately associated with the complicated chemical valences of Au and the specific annealing conditions.  相似文献   

11.
Metal atoms bonded with Si adatoms on the Si(111)-(7x7) surface undergo migration by hopping adjacent Si-rest atoms with dangling bond. By saturated adsorption of Si(111)-(7x7) surface with C(2)H(5)OH, the whole Si-rest atoms and a half of Si adatoms are occupied with Si-H and Si-OC(2)H(5), so that the Zn atoms adsorbed on this surface cannot migrate by hopping. When Zn atoms were deposited on this surface, ca. 5 nm Zn dots were grown in the hexagonal spacing of ca. 5.4 nm width around the corner holes, which work as a mold. This is quite different from the growth of honeycomb layers composed of Zn(3) clusters on the clean Si(111)-(7x7) surface. The dots grow up to nine (1.97 nm) to 13 layers (2.64 nm) by keeping their size, which implies a layer-by-layer growth of dots in the mold, where the growth is controlled by the kinetics instead of energetic feasibility.  相似文献   

12.
The structural and electronic characteristics of the Si(n)C(2)H(2), n=3,4,5, clusters are studied by ab initio calculations based on coupled cluster and density functional theory using the hybrid B3LYP functional. It is demonstrated that all three clusters are structurally and electronically homologous to the corresponding isoelectronic organometallic carboranes C(2)B(n)H(n+2). This homology, which is in full agreement with the analogy of Si(6) (2-) and B(6)H(6) (2-) demonstrated recently by the author [J. Chem. Phys. 127, 014314 (2007)], includes not only the ground states but also the lower-lying isomers as well. These lowest lying isomers can be obtained by ortho, para, and meta substitutions from the corresponding Si(n) (2-), n=3,4,5, dianions. The energetic ordering of the low-lying isomers is in full agreement with the known valence and topological charge stability rules developed for carboranes. The hydrogenated clusters are much more stable than their nonhydrogenated counterparts. It is suggested that Si(3)C(2)H(2), Si(4)C(2)H(2), and Si(5)C(2)H(2), which can be probably found in interstellar space, are special examples of a general class of silicon-carbon clusters of the form Si(n)C(2)H(2), with analogous properties and similarities to the corresponding carboranes C(2)B(n)H(n+2). It is furthermore illustrated that the lowest energy structures of the Si(n)C(2) clusters can be obtained through a systematic and straightforward procedure from the Si(n)C(2)H(2) clusters. The present results could hopefully make possible the exploitation of the rich borane and carborane chemistry for the design and development of novel silicon and silicon-carbon composite nanomaterials.  相似文献   

13.
在MP2水平上采用6-311G基组计算了van der Waals复合物X…H2O(X=Li, Na, K)的非线性光学性质(μ, α, β), 讨论了基组效应和电子相关效应对计算结果的贡献. 在MP2/6-311++G(2df, 2pd)水平上计算得到的三个复合物分子X(X=Li, Na, K)•••H2O的非线性光学性质. 结果表明, 三种复合物分子均具有巨大的一阶超极化率, 其中最外层电子的弥散特性对一阶超极化率有很大的影响.  相似文献   

14.
The structure of self-assembled monolayers (SAMs) of undecylenic acid methyl ester (SAM-1) and undec-10-enoic acid 2-bromo-ethyl ester (SAM-2) grown on hydrogen-passivated Si(111) were studied by X-ray reflectivity (XRR), X-ray standing waves (XSW), X-ray fluorescence (XRF), atomic force microscopy, and X-ray photoelectron spectroscopy (XPS). The two different SAMs were grown by immersion of H-Si(111) substrates into the two different concentrated esters. UV irradiation during immersion was used to create Si dangling bond sites that act as initiators of the surface free-radical addition process that leads to film growth. The XRR structural analysis reveals that the molecules of SAM-1 and SAM-2 respectively have area densities corresponding to 50% and 57% of the density of Si(111) surface dangling bonds and produce films with less than 4 angstroms root-mean-square roughness that have layer thicknesses of 12.2 and 13.2 angstroms. Considering the molecular lengths, these thicknesses correspond to a 38 degrees and 23 degrees tilt angle for the respective molecules. For SAM-2/Si(111) samples, XRF analysis reveals a 0.58 monolayer (ML) Br total coverage. Single-crystal Bragg diffraction XSW analysis reveals (unexpectedly) that 0.48 ML of these Br atoms are at a Si(111) lattice position height that is identical to the T1 site that was previously found by XSW analysis for Br adsorbed onto Si(111) from a methanol solution and from ultrahigh vacuum. From the combined XPS, XRR, XRF, and XSW evidence, it is concluded that Br abstraction by reactive surface dangling bonds competes with olefin addition to the surface.  相似文献   

15.
A series of asymmetric donor-acceptor substituted salen-type Schiff-bases have been synthesized and their structures, electronic properties and second order nonlinearities were investigated by DFT methods. In order to verify the stable of these Schiff-base derivates, the IR spectrum of these Schiff-base derivates were calculated, the result showed that these compounds are stable. The results of TD-DFT calculation indicate that the derivatives with the electron-donating group (CH3, OCH3 or N(C2H5)2) have a red shift absorption compared to derivatives with the electron-withdrawing group (NO2). The analysis of MOS indicates that the CN group has contribution to the LUMO orbital while the groups of OCH3, N(C2H5)2 and NO2 have contribution to the HOMO orbital. OCH3, N(C2H5)2 as electron rich groups, made the derivates have a larger first static hyperpolarizability. However, the compound (II) with a NO2 substituent, also has a large first static hyperpolarizability. This is probably because of the special transition model, namely the values of two oscillator strength f (fHOMO-1-LUMO=0.405, fHOMO-LUMO=0.321) are almost equal. In order to understand the influence of the energy gap (ΔE) between the HOMO and the LUMO orbitals on the first static hyperpolarizability, we calculated the energy gap (ΔE) of all Schiff-base compounds. The results show that the smaller the HOMO-LUMO energy gap is, the larger the first static hyperpolarizability is.  相似文献   

16.
Eighteen structures of new organic alkalides (M+@n6adz)M'- (M, M'=Li, Na, K; n=2, 3) with the alkali-metal cation M+ lying near the center of the adz cage and the alkali-metal anion M'- located outside are obtained with all real frequencies. They exhibit very large static first hyperpolarizabilities (beta0) up to 3.2x10(5) au, which exceeds the record value of beta0=1.7x10(5) au for nonlinear optical compounds [Chem.-Eur. J. 1997, 3, 1091]. All potassides (M+@n6adz)K- (M=Li, Na, K; n=2, 3) have considerably large beta0 values (1.6x10(5)-3.2x10(5) au) much larger than the beta0 value (3.6x10(4) au) of the previously designed cuplike alkalide Li+(calix[4]pyrrole)K- [J. Am. Chem. Soc. 2006, 128, 1072]. This shows that the 26adz and 36adz cage complexants are preferable to cuplike calix[4]pyrrole complexant in enhancing the first hyperpolarizability. The effect of cage size of the complexant on the first hyperpolarizability is also presented here: in most cases, the smaller cage complexant corresponds to the larger beta0 value. Moreover, the crucial role by the alkali-metal anion in the large first hyperpolarizability of these alkalides is revealed. These results may provide new means for designing high-performance nonlinear optical materials.  相似文献   

17.
基于密度泛函理论,采用广义梯度近似(GGA)分析了H2分子吸附在氧化硅团簇上的几何结构、电子性质以及吸附能.结果发现:H2分子与Si3O4团簇相互作用时,H2分子被分解,游离的H原子优先吸附在末端Si原子上,表明Si3O4团簇体系对氢气的存储主要依赖于末端存在悬挂键的Si原子,接着H2分子才以分子的形式以较小吸附能吸附在Si3O4H4团簇上.氢气分子主要引起与其邻近的原子电荷的重新分布.该团簇体系的红外、拉曼光谱图有效地鉴定了H2分子的吸附状态,为理论上确定团簇的稳定结构和实验上对观测结果的分析提供有力的途径.  相似文献   

18.
A new method for the formation of molecular monolayers on silicon surfaces utilizing gas-phase photochemical reactions is reported. Hydrogen-terminated Si(111) surfaces were exposed to various gas-phase molecules (hexene, benzaldehyde, and allylamine) and irradiated with ultraviolet light from a mercury lamp. The surfaces were studied with in situ Fourier transform infrared spectroscopy, high-resolution electron energy loss spectroscopy, and scanning tunneling microscopy. The generation of gas-phase radicals was found to be the initiator for organic monolayer formation via the abstraction of hydrogen from the H/Si(111) surface. Monolayer growth can occur through either a radical chain reaction mechanism or through direct radical attachment to the silicon dangling bonds.  相似文献   

19.
The reaction of a monosubstituted Keggin polyoxometalate (POM) generated in situ with copper-phenanthroline complexes in excess ammonium or rubidium acetate led to the formation of the hybrid metal organic-inorganic compounds A7[Cu2(ac)2(phen)2(H2O)2][Cu3(ac)3(phen)3(H2O)3][Si2W22Cu2O78(H2O)].approximately 18 H2O (A=NH4+ (1), Rb+ (2); ac=acetate; phen=1,10-phenanthroline). These compounds are constructed from inorganic and metalorganic interpenetrated sublattices containing the novel bimolecular Keggin POM, [Si2W22Cu2O78(H2O)]12-, and Cu-ac-phen complexes, [Cu(ac)(phen)(H2O)]n n+ (n=2, 3). The packing of compound 1 can be viewed as a stacking of open-framework layers parallel to the xy plane built of hydrogen-bonded POMs, and zigzag columns of pi-stacked Cu-ac-phen complex cations running along the [111] direction. Magnetic and EPR results are discussed with respect to the crystal structure of the compounds. DFT calculations on [Cu(ac)(phen)(H2O)]n n+ cationic complexes have been performed, to check the influence of packing in the complex geometry and determine the magnetic exchange pathways.  相似文献   

20.
Au的乙炔配合物非线性光学性质的量子化学计算   总被引:1,自引:0,他引:1  
曾薇  丁涪江  赵可清  ZHAO Ke-Qing 《化学学报》2008,66(17):1935-1942
对过渡金属Au的有机配合物Ph3PAuC≡CR (R=C6H4OCH3, Ph, C6H4NO2和PyNO2)的极化率和一阶、二阶超极化率进行了量子化学计算. 构型在B3LYP/CEP-121G水平优化. 用有效模型势方法和二阶多体微扰方法分别考虑了相对论效应和电子相关效应. 对基组进行了慎重的选择, 以ECP-HYPOL基组为对照标准, 在LFK基组基础上简化得到一个较小的基组LFK2. 计算结果与实测结果趋势一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号