首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The oxidative cross-coupling between 4-hydroxy-6-methyl-2-pyrone or 3-hydroxy-2-methyl-4-pyrone and secondary phosphine chalcogenides proceeds in CCl4/Et3N under mild conditions (20–52 °С, 0.75–10 h) through the hydroxyl group to give O-(6-methyl-2-oxo-2H-pyran-4-yl) diorganylphosphinochalcogenoates or O-(2-methyl-4-oxo-4H-pyran-3-yl) diorganylphosphinochalcogenoates, in high yields.  相似文献   

2.
Fe(Cp)2BF4 is an efficient catalyst for the alcoholysis of aromatic, aliphatic, and cyclic epoxides giving excellent yields of the corresponding β-alkoxy alcohols under ambient conditions. The methanolysis of styrene oxide using Fe(Cp)2BF4 as a catalyst (5 mol %) gave excellent yield of 2-methoxy-2-phenylethanol with complete regio-selectivity. The ring opening of cyclic epoxides gave 77–97% yields of trans-β-methoxy alcohols, in 0.5–6 h. The use of 1,2-epoxyhexane and 1,2-epoxydodecane as substrates gave both regioisomers in excellent yields. The first order rate of reaction with respect to catalyst was observed for the kinetics of ring opening of 1,2-epoxyhexane with methanol.  相似文献   

3.
A new dinuclear compound, [Cu2(bpdo)2Br4], (in which bpdo = 2,2′-Bipyridine-1,1′-dioxide), has been synthesized and fully characterized, including the X-ray and the magnetic susceptibility. Each copper(II) ion in the dinuclear compound has a distorted square pyramidal geometry with the basal plane formed by two oxygen atoms of two ligand molecules which are bridging between the Cu ions with Cu–O distances of 2.021(2) and 2.039(2) Å and two bromide atoms with Cu–Br distances of 2.3577(6) and 2.3665(7) Å. The fifth position is occupied by a non bridging oxygen atom of a ligand with a Cu–O distance of 2.197(2) Å. The distance between the Cu ions is 3.334 Å, while the Cu–O–Cu angle is 110.37(9)°. The magnetic susceptibility measurements (from 5 to 350 K) agree with a very strong antiferromagnetic interaction with a large singlet–triplet splitting (J) of −905 cm−1. At high T (above 250 K) a triplet powder EPR is observed.  相似文献   

4.
High-speed counter-current chromatography (HSCCC) with a two-phase solvent system (hexane–ethanol–acetonitrile–water 10:8:1:1, v/v) was applied to examine the leaves of Hortia oreadica, which afforded the known limonoid guyanin (1), the alkaloids rutaecarpin (2) and dictamnine (6), the dihydrocinnamic acid derivatives methyl 5,7-dimethoxy-2,2-dimethyl-2H-1-benzopyran-6-propanoate (3), 5,8-dimethoxy-2,2-dimethyl-2H-1-benzopyran-6-propanoic acid (4), together with the new E-3,4-dimethoxy-α(3-hydroxy-4-carbomethoxyphenyl)cinnamic acid (5). The recovery of compounds 1–6 was determined by comparison with LC-atmospheric pressure chemical ionization MS/MS data: 66.2%, 93.1%, 102.5%, 101.2%, 99.0% and 84.9%, respectively. Compound 3 showed IC50 of 23.6 μM against Plasmodium falciparum and 15.6 μM against Trypanosoma brucei rhodesienses and was not toxic to KB cells (IC50 > 100 μM).  相似文献   

5.
Mononuclear, square-planar platinum(II) complexes involving derivatives of aromatic cytokinins as the ligands, and having the general formula cis-[Pt(Ln)2Cl2] (13) and trans-[Pt(Ln)2Cl2] (46), where n = 1–3, L1 = 2-chloro-6-(benzylamino)-9-isopropylpurine, L2 = 2-chloro-6-[(4-methoxybenzyl)amino]-9-isopropylpurine and L3 = 2-chloro-6-[(2-methoxybenzyl)-amino]-9-isopropylpurine, have been synthesized and characterized by elemental analysis, MALDI-TOF mass, FT IR, 1H, 13C, 15N and 195Pt NMR spectral measurements. Dynamic cis-to-trans isomerization process of complex 1 in N,N′-dimethylformamide (DMF) has been investigated by means of multinuclear NMR spectroscopy. The solid-state structures of 1, 4 · (DMF)2, and 5 have been determined by single crystal X-ray analysis. X-ray structures revealed that the heterocyclic ligands are coordinated to platinum via nitrogen atom N(7) in all the complexes studied. In vitro cytotoxicity of the prepared complexes against MCF7, G361, K562, and HOS has been evaluated. Owing to low solubility of the complexes in water, the cytotoxicity has been only tested up to 5 μM concentration. Unfortunately, all complexes have been found to be non-cytotoxic in the accessible concentration range.  相似文献   

6.
In this paper, a novel sandwich electrochemiluminescence (ECL) immunosensor was constructed by ferrocene for quenching Ag nanoparticles functionalized g-C3N4 (Ag@g-C3N4) emission. The prepared Ag@g-C3N4 had strong and stable ECL signals compared to pure g-C3N4 and primary antibody (Ab1) can be immobilized on Ag@g-C3N4 by adsorption of Ag nanoparticles. Ferrocene carboxylic acid (Fc-COOH) labeled secondary antibody was immobilized on Au doped mesoporous Al2O3 nanorods (Au@Al2O3–Fc-COOH@Ab2) as labels through adsorption ability of Au toward proteins. After a sandwich-type immunoreaction, a remarkable decrease of ECL signal was observed due to the ECL quenching of Ag@g-C3N4 by Au@Al2O3–Fc-COOH@Ab2. As a result, the change of ECL intensity has a direct relationship with the logarithm of CEA concentrations in the range of 1 pg mL−1–100 ng mL−1 with a detection limit of 0.35 pg mL−1 (S/N = 3). Additionally, the proposed immunosensor shows high specificity, good reproducibility, and long-term stability.  相似文献   

7.
A new iron phosphate (NH4)4Fe3(OH)2F2[H3(PO4)4] has been synthesized hydrothermally at HF concentrations from 0.5 to 1.2 mL. Single-crystal X-ray diffraction analysis reveals its three-dimensional open-framework structure (monoclinic, space group P21/n (No. 14), a=6.2614(13) Å, b=9.844(2) Å, c=14.271(3) Å, β=92.11(1)°, V=879.0(3) Å3). This structure is built from isolated linear trimers of corner-sharing Fe(III) octahedra, which are linked by (PO4) groups to form ten-membered-ring channels along [1 0 0]. This isolated, linear trimer of corner-sharing Fe(III) octahedra, [(FeO4)3(OH)2F2], is new and adds to the diverse linkages of Fe polyhedra as secondary building units in iron phosphates. The trivalent iron at octahedral sites for the title compound has been confirmed by synchrotron Fe K-edge XANES spectra and magnetic measurements. Magnetic measurements also show that this compound exhibit a strong antiferromagnetic exchange below TN=17 K, consistent with superexchange interactions expected for the linear trimer of ferric octahedra with the Fe-F-Fe angle of 132.5°.  相似文献   

8.
Schiff base N,N′-bis(salicylidene)-p-phenylenediamine (LH2) complexed with Pt(en)Cl2 and Pd(en)Cl2 provided [Pt(en)L]2 · 4PF6 (1) and Pd(Salen) (2) (Salen = N,N′-bis(salicylidene)-ethylenediamine), respectively, which were characterized by their elemental analysis, spectroscopic data and X-ray data. A solid complex obtained by the reaction of hexafluorobenzene (hfb) with the representative complex 1 has been isolated and characterized as 3 (1 · hfb) using UV–Vis, NMR (1H, 13C and 19F) data. A solid complex of hfb with a reported Zn-cyclophane 4 has also been prepared and characterized 5 (4 · hfb) for comparison with complex 3. The association of hfb with 1 and 4 has also been monitored using UV–Vis and luminescence data.  相似文献   

9.
In the present work, a novel type of superparamagnetic nanosorbent, polythiophene-coated Fe3O4 nanoparticles (Fe3O4@PTh NPs), have been successfully synthesized. The synthesized NPs were characterized by scanning electron microscopy (SEM), Fourier transform-infrared (FT-IR) spectroscopy, and thermal gravimetric analysis (TGA). The synthesized Fe3O4@PTh NPs were applied as an efficient sorbent for extraction and preconcentration of several typical plasticizer compounds (di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and dioctyl adipate (DOA)) from environmental water samples. Separation of Fe3O4@PTh NPs from the aqueous solution was simply achieved by applying external magnetic field. Separation and determination of the extracted plasticizers was performed by gas chromatography–flame ionization detection (GC–FID). Several variables affecting the extraction efficiency of the analytes i.e., amount of NPs sorbent, salt concentration, extraction time, and desorption conditions were investigated and optimized. The best working conditions were as follows: amount of sorbent, 100 mg; NaCl concentration, 30% (w/v); sample volume, 45 mL; extraction time, 10 min; and 100 μL of ethyl acetate for desorption of the analytes within 2 min. Under optimized conditions, preconcentration factors for DBP, DEHP, and DOA were obtained as 86, 194, and 213, respectively. The calibration curves were linear (R2 > 0.998) in the concentration range of 0.4–100 μg L−1 for both DEHP and DOA and 0.7–100 μg L−1 for DBP. The limits of detection (LODs) were obtained in the range of 0.2–0.4 μg L−1. The intra-day relative standard deviations (RSDs%) based on four replicates were obtained in the range of 4.0–12.3%. The proposed procedure was applied to analysis of water samples including river water, bottled mineral water, and boiling water exposed to polyethylene container (after cooling) and recoveries between 85 and 99% and RSDs lower than 12.8% were obtained.  相似文献   

10.
The reaction of PhHgOAc with N-NHCO-2-C4H3S-Htpp (5) and N-p-HNSO2C6H4tBu-Htpp (4) gave a mercury (II) complex of (phenylato) (N-2-thiophenecarboxamido-meso-tetra phenylporphyrinato)mercury(II) 1.5 methylene chloride solvate [HgPh(N-NHCO-2-C4H3S-tpp) · CH2Cl2 · 0.5C6H14;  6 · CH2Cl2 · 0.5C6H14] and a bismercury complex of bisphenylmercury(II) complex of 21-(4-tert-butyl-benzenesulfonamido)-5,10,15,20-tetraphenylporphyrin, [(HgPh)2(N-p-NSO2C6H4tBu-tpp); 7], respectively. The crystal structures of 6 · CH2Cl2 · 0.5C6H14 and 7 were determined. The coordination sphere around Hg(1) in 6 · CH2Cl2 · 0.5C6H14 and Hg(2) in 7 is a sitting-atop derivative with a seesaw geometry, whereas for the Hg(1) in 7, it is a linear coordination geometry. Both Hg(1) in 6 · CH2Cl2 · 0.5C6H14 and Hg(2) in 7 acquire 4-coordination with four strong bonds [Hg(1)–N(1) = 2.586(3) Å, Hg(1)–N(2) = 2.118(3) Å, Hg(1)–N(3) = 2.625(3) Å, and Hg(1)–C(50) = 2.049(4) Å for 6 · CH2Cl2 · 0.5C6H14; Hg(2)–N(1) = 2.566(6) Å, Hg(2)–N(2) = 2.155(6) Å, Hg(2)–N() = 2.583(6) Å, and Hg(2)–C(61) = 2.064(7) Å for 7]. The plane of the three pyrrole nitrogen atoms [i.e., N(1)–N(3)] strongly bonded to Hg(1) in 6 · CH2Cl2 · 0.5C6H14 and to Hg(2) in 7 is adopted as a reference plane 3N. For the Hg2+ complex in 6 · CH2Cl2 · 0.5C6H14, the pyrrole nitrogen bonded to the 2-thiophenecarboxamido ligand lies in a plane with a dihedral angle of 33.4° with respect to the 3N plane, but for the bismercury(II) complex in 7, the corresponding dihedral angle for the pyrrole nitrogen bonded to the NSO2C6H4tBu group is found to be 42.9°. In the former complex, Hg(1)2+ and N(5) are located on different sides at 1.47 and −1.29 Å from its 3N plane, and in the latter one, Hg(2)2+ and N(5) are also located on different sides at −1.49 and 1.36 Å form its 3N plane. The Hg(1)?Hg(2) distance in 7 is 3.622(6) Å. Hence, no metallophilic Hg(II)?Hg(II) interaction may be anticipated. NOE difference spectroscopy, HMQC and HMBC were employed to unambiguous assignment for the 1H and 13C NMR resonances of 6 · CH2Cl2 ·  0.5C6H14 in CD2Cl2 and 7 in CDCl3 at 20 °C. The 199Hg chemical shift δ for a 0.05 M solution of 7 in CDCl3 solution is observed at −1074 ppm for Hg(2) nucleus with a coordination number of four and at −1191 ppm for Hg(1) nucleus with a coordination number of two. The former resonance is consistent with that chemical shift for a 0.01 M solution of 6 in CD2Cl2 having observed at −1108 ppm for Hg(1) nucleus with a coordination number of four.  相似文献   

11.
A detailed study, involving the synthesis of a single-source precursor containing two metal ions sharing the same crystallographic site, has been undertaken to elucidate the use of such a single-source precursor in a CVD process for growing thin films of oxides comprising these two metals, ensuring a uniform composition and distribution of metal ions. The substituted complexes Cr1−xAlx(acac)3, where acac = acetylacetonate, have been prepared by a co-synthesis method, and characterized using UV–Vis spectroscopy, TGA/DTA measurements, and single crystal X-ray diffraction at low temperature. All the studied compositions crystallize in the monoclinic space group P21/c with Z = 4 in the unit cell. It was observed that the ratio (Al:Cr) of the site occupancy for the metal ions, obtained from single crystal refinement, is in agreement with the results obtained from complexometric titrations. All the solid state structures have the metal in an octahedral environment forming six-membered chelate rings. M–O acac bond lengths and disorder in the terminal carbon have been studied in detail for these substituted metal–organic complexes. One composition among these was chosen to evaluate their suitability as a single-source precursor in a LPMOCVD process (low-pressure metal–organic chemical vapour deposition) for the deposition of a substituted binary metal oxide thin film. The resulting thin films were characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy.  相似文献   

12.
13.
[Ni(H2O)6][Cu3Cl8(H2O)2] · (15-crown-5)2 · 2H2O can be conveniently prepared by the interaction of NiCl2 · 6H2O, CuCl2 · 2H2O and 15-crown-5 in water. The X-ray crystal structure reveals an ionic complex involved in a hydrogen-bonded two dimensional network with the [Ni(H2O)6]2+ and [Cu3Cl8(H2O)2]2− ions sandwiched between the 15-crown-5 macrocycles. The magnetic susceptibility data (4–300 K) and magnetisation isotherms (2–5.5 K; 0–5 T) are best interpreted in terms of intra-trimer ferromagnetic coupling within the [Cu3Cl8(H2O)2]2− moieties, with J ∼ 6 cm−1, and antiferromagnetic coupling between the trimers, the latter mediated by H-bonding pathways. Comparisons are made to other reported quaternary ammonium salts of [Cu3Cl8]2− and [Cu3Cl12]6−, most of which display structures that involve close stacking of such Cu(II) trimers, rather than being of the present isolated, albeit H-bonded, types.  相似文献   

14.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

15.
The one-pot, simple and efficient three-component condensation protocol for the preparation of a series of twenty-five new 3-acyl-4-aryl-2-(trifluoromethyl)-2-hydroxy-3,4,7,8-tetrahydro-2H-chromen-5(6H)-ones, where aryl = Ph, 4-tolyl, 4-ClPh, 4-NO2Ph and 4-CHOPh, and acyl = Ac, Bz, 4-FBz, furan-2-oyl, thien-2-oyl and naphth-1-oyl, employing 1,3-cyclohexanedione, five aryl aldehydes and for the first time, six 4-alkyl(aryl/heteroaryl)-4-methoxy-1,1,1-trifluoroalk-3-en-2-ones, is described. Yields in 15-75% were obtained when the MCRs were performed in the presence of a catalytic amount of triethylamine (25 mol%) and in ethanol as solvent under reflux for 16 h. A representative X-ray diffraction data for 3-acetyl-4-phenyl-2-(trifluoromethyl)-2-hydroxy-3,4,7,8-tetrahydro-2H-chromen-5(6H)-one is also showed.  相似文献   

16.
A new complex, [Cu2(sulfameter)4]3 · 2.5H2O (sulfameter = 4-amino-N-(5-methoxy-2-pyrimidinyl)benzenesulfonamide), has been synthesized. Its structure has been determined by single-crystal X-ray diffraction and its spectroscopic properties (EPR, IR, Raman, UV–Vis) have been analyzed. The structure presented three different dimeric units in the unit cell and the EPR spectra, characteristic of antiferromagnetically coupled dimers, revealed two magnetically different dimeric environments.  相似文献   

17.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

18.
A series of selected pyromorphite minerals Pb5(PO4)3Cl from different Australian localities has been studied by Raman spectroscopy complemented with selected infrared spectroscopy. The Raman spectrum of unsubstituted pyromorphite shows a single band at around 920 cm−1 but for the natural minerals two bands at 919 and ∼932 cm−1 attributed to the ν1 (PO4)3− stretching vibration. The observation of multiple bands is attributed to the non-equivalence of phosphate units in the pyromorphite structure and the reduction in symmetry of the (PO4)3− units. This symmetry reduction is confirmed by the observation of multiple bands in both the ν4 bending region (500–595 cm−1) and the ν2 bending region (350–500 cm−1). The presence of isomorphic substitution of (PO4)3− by (AsO4)3− units is identified by the ν1 symmetric stretching bands at around 824 and 851 cm−1 and the ν2 bending region around 331 and 354 cm−1. Contrary to expectation Raman bands in the 3320–3700 cm−1 region are observed and assigned to OH stretching bands of OH units resulting from the substitution of chloride anions in the pyromorphite structure. This study brings in to question the actual formula of natural pyromorphite as it is better represented as Pb5(PO4,AsO4)3(Cl,OH) · xH2O.  相似文献   

19.
The reaction of PhHgOAc with 2-NCH3NCTPPH (2) gave a mercury(II) complex of (phenylato)(2-N-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N′,N″)-mercury(II), [HgPh(2-NCH3NCTPP); 7]; the coordination sphere around Hg(1) in 7 was a four-coordinate derivative with a seesaw geometry and dipole–dipole (DD) interaction governed the longitudinal relaxation rate for Hg(1)–Ph–H2,6 protons of 7 in CDCl3 (0.01 M) at 599.95 MHz.  相似文献   

20.
The syntheses and crystal structures of four new uranyl complexes with [O,N,O,N′]-type ligands are described. The reaction between uranyl nitrate hexahydrate and the phenolic ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-N′,N′-dimethylethylenediamine)], H2L1 in a 1:2 molar ratio (M to L), yields a uranyl complex with the formula [UO2(HL1)(NO3)] · CH3CN (1). In the presence of a base (triethylamine, one mole per ligand mole) with the same molar ratio, the uranyl complex [UO2(HL1)2] (2) is formed. The reaction between uranyl nitrate hexahydrate and the ligand [(N,N-bis(2-hydroxy-3,5-di-t-butylbenzyl)-N′,N′-dimethylethylenediamine)], H2L2, yields a uranyl complex with the formula [UO2(HL2)(NO3)] · 2CH3CN (3) and the ligand [N-(2-pyridylmethyl)-N,N-bis(2-hydroxy-3,5-dimethylbenzyl)amine], H2L3, in the presence of a base yields a uranyl complex with the formula [UO2(HL3)2] · 2CH3CN (4). The molecular structures of 14 were verified by X-ray crystallography. The complexes 14 are zwitter ions with a neutral net charge. Compounds 1 and 3 are rare neutral mononuclear [UO2(HLn)(NO3)] complexes with the nitrate bonded in η2-fashion to the uranyl ion. Furthermore, the ability of the ligands H2L1–H2L4 to extract the uranyl ion from water to dichloromethane, and the selectivity of extraction with ligands H2L1, H3L5 (N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-3-amino-1-propanol), H2L6 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane · HCl) and H3L7 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol · HCl) under varied chemical conditions were studied. As a result, the most efficient and selective ligand for uranyl ion extraction proved to be H3L7 · HCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号