首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 2,11‐cembranoid family of natural products has been used as inspiration for the synthesis of a structurally simplified, functionally diverse library of octahydroisobenzofuran‐based compounds designed to augment a typical medicinal chemistry library screen. Ring‐closing metathesis, lactonisation and SmI2‐mediated methods were exemplified and applied to the installation of a third ring to mimic the nine‐membered ring of the 2,11‐cembranoids. The library was assessed for aqueous solubility and permeability, with a chemical‐space analysis performed for comparison to the family of cembranoid natural products and a sample set of a screening library. Preliminary investigations in cancer cells showed that the simpler scaffolds could recapitulate the reported anti‐migratory activity of the natural products.  相似文献   

2.
Natural product-like libraries represent an effort to combine the attractive features of natural products and combinatorial libraries for high-throughput screening. Three approaches to natural product-like library design are discussed: (1) Libraries based on core scaffolds from individual natural products, (2) libraries of diverse structures with general structural characteristics of natural products, and (3) libraries of diverse structures based on specific structural motifs from classes of natural products. Examples of successful applications in discovery screening are described for each category. These studies highlight the exciting potential of natural product-like libraries in both chemical biology and drug discovery.  相似文献   

3.
Natural products have proven to be a rich source of molecular architectures for drugs. Here, an integrated approach to natural product screening is proposed, which uncovered eight new natural product scaffolds for KRAS—the most frequently mutated oncogenic driver in human cancers, which has remained thus far undrugged. The approach combines aspects of virtual screening, fragment-based screening, structure-activity relationships (SAR) by NMR, and structure-based drug discovery to overcome the limitations in traditional natural product approaches. By using our approach, a new “snugness of fit” scoring function and the first crystal-soaking system of the active form of KRASG12D, the protein–ligand X-ray structures of a tricyclic indolopyrrole fungal alkaloid and an indoloisoquinolinone have been successfully elucidated. The natural product KRAS hits discovered provide fruitful ground for the optimization of highly potent natural-product-based inhibitors of the active form of oncogenic RAS. This integrated approach for screening natural products also holds promise for other “undruggable” targets.  相似文献   

4.
In a search for more effective and safe anti-diabetic compounds, we developed a pharmacophore model based on partial agonists of PPARγ. The model was used for the virtual screening of the Chinese Natural Product Database (CNPD), a library of plant-derived natural products primarily used in folk medicine. From the resulting hits, we selected methyl oleanonate, a compound found, among others, in Pistacia lentiscus var. Chia oleoresin (Chios mastic gum). The acid of methyl oleanonate, oleanonic acid, was identified as a PPARγ agonist through bioassay-guided chromatographic fractionations of Chios mastic gum fractions, whereas some other sub-fractions exhibited also biological activity towards PPARγ. The results from the present work are two-fold: on the one hand we demonstrate that the pharmacophore model we developed is able to select novel ligand scaffolds that act as PPARγ agonists; while at the same time it manifests that natural products are highly relevant for use in virtual screening-based drug discovery.  相似文献   

5.
The aim of this tutorial review is to introduce the reader to the concept, synthesis and application of natural product-inspired compound collections as an important field in chemical biology. This review will discuss how potentially interesting scaffolds can be identified (structural classification of natural products), synthesized in an appropriate manner (including stereoselective transformations for solid phase-bound compounds) and tested in biological assays (cell-based screening as well as biochemical in vitro assays). These approaches will provide the opportunity to identify new and interesting compounds as well as new targets for chemical biology and medicinal chemistry research.  相似文献   

6.
Symbionts are microorganisms residing in multicellular hosts(e.g., plants and animals), and they have been witnessed to be a rich source of diverse functional molecules. This review describes structures and biological activities of symbiont-derived secondary metabolites commonly referred to as "natural products", and highlights that symbiotic microbes represent an underexplored reservoir of natural products with unique scaffolds and promising significance in managing human healthcare and agricultural production.  相似文献   

7.
The structural diversity of natural products and their derivatives have long contributed to the development of new drugs. However, the difficulty in obtaining compounds bearing skeletally novel structures has recently led to a decline of pharmaceutical research into natural products. This paper reports the construction of a meroterpenoid-like library containing 25 compounds with diverse molecular scaffolds obtained from diversity-enhanced extracts. This method constitutes an approach for increasing the chemical diversity of natural-product-like compounds by combining natural product chemistry and diversity-oriented synthesis. Extensive pharmacological screening of the library revealed promising compounds for anti-osteoporotic and anti-lymphoma/leukemia drugs. This result indicates that the use of diversity-enhanced extracts is an effective methodology for producing chemical libraries for the purpose of drug discovery.  相似文献   

8.
The Baylis-Hillman (BH) reaction plays a fascinating role in the field of synthetic and medicinal chemistry. BH adducts and their derivatives have been used as crucial synthons for the synthesis of various pharmaceutically useful natural products and compounds with carbocyclic or heterocyclic frameworks. This digest letter aims to discuss some key ideas for the synthesis of biologically active scaffolds using BH reaction and raise the awareness of this emerging research domain in modern drug discovery. In this review, we will present and discuss recent reports of various biologically active scaffolds derived from BH reaction, and their reported biological activities.  相似文献   

9.
The development of new drugs calls for large collections of diverse molecules with considerable complexity. Ring distortion of natural products provides an efficient and facile approach to access new architectures with intriguing biological activities, by harnessing their inherent complexity. In this study, such a strategy has been explored on an abundant C19‐diterpenoid alkaloid, deltaline, enabling the synthesis of 32 new derivatives bearing a broad spectrum of unique scaffolds. Extensive spectroscopic studies including X‐ray crystallographic analyses strongly supported the structures of the obtained novel skeletons, which present comparable opportunities with the great contributions made by nature for discovery of new lead compounds.  相似文献   

10.
The first two highly enantioselective palladium‐catalyzed allylic alkylations with benzylic nucleophiles, activated with Cr(CO)3, have been developed. These methods enable the enantioselective synthesis of α‐2‐propenyl benzyl motifs, which are important scaffolds in natural products and pharmaceuticals. A variety of cyclic and acyclic allylic carbonates are competent electrophilic partners furnishing the products in excellent enantioselectivity (up to 99 % ee and 92 % yield). This approach was employed to prepare a nonsteroidal anti‐inflammatory drug analogue.  相似文献   

11.
化学基元组学(chemomics)是与化学信息学、生物信息学、合成化学等学科相关的交叉学科.生物系统从内源性小分子(天然砌块)出发,通过酶催化的化学反应序列制造天然产物.生物系统通过化学反应和天然砌块向目标天然产物“砌入”一组原子,这样的一组原子称为化学基元(chemoyl).化学基元组(chemome)是生物组织中所含有的化学基元的全体.化学基元组学研究各种化学基元的结构、组装与演化的基本规律.在生存压力和繁衍需求的驱动下,生物系统已经进化出有效手段来合成天然产物以应付环境的变化,并产生了丰富多彩的生物和化学多样性.近年来,人们意识到药物创新的瓶颈之一是药物筛选资源的日益枯竭.化学基元组学可以解决这个瓶颈问题,它通过揭示生物系统制备化学多样性的规律,发展仿生合成方法制备类天然化合物库(quasi natural product libraries)以供药物筛选.本文综述了化学基元组学的主要研究内容及其在药物创新各领域中的潜在应用.  相似文献   

12.
Chemomics is an interdisciplinary study using approaches from chemoinformatics,bioinformatics,synthetic chemistry,and other related disciplines.Biological systems make natural products from endogenous small molecules (natural product building blocks) through a sequence of enzyme catalytic reactions.For each reaction,the natural product building blocks may contribute a group of atoms to the target natural product.We describe this group of atoms as a chemoyl.A chemome is the complete set of chemoyls in an organism.Chemomics studies chemomes and the principles of natural product syntheses and evolutions.Driven by survival and reproductive demands,biological systems have developed effective protocols to synthesize natural products in order to respond to environmental changes;this results in biological and chemical diversity.In recent years,it has been realized that one of the bottlenecks in drug discovery is the lack of chemical resources for drug screening.Chemomics may solve this problem by revealing the rules governing the creation of chemical diversity in biological systems,and by developing biomimetic synthesis approaches to make quasi natural product libraries for drug screening.This treatise introduces chemomics and outlines its contents and potential applications in the fields of drug innovation.  相似文献   

13.
A highly efficient screening method for naturally occurring products that bind to a specific target protein was demonstrated by using hVDR magnetic beads. The native ligand 1α,25(OH)2 VD3 ( 1 ) was selectively bound by hVDR magnetic beads when present in a mixture of natural compounds. Furthermore, this method was shown to be applicable to the identification of natural products that interact with a specific protein immobilized on the beads from an extract of a natural resource. Two new natural compounds were isolated by this method. This approach will be helpful for the discovery of novel, naturally occurring products that bind to specific target proteins. This method has the further advantages that it can identify the HPLC peak corresponding to the target compound for isolation, as well as provide important UV, CD, or MS profile information.  相似文献   

14.
Selected natural products have long been considered as desirable targets for total synthesis due to their unique biological properties and their challenging structural complexity. Laboratory synthesis of natural compounds usually relies on target-oriented synthesis, involving the production, isolation and purification of successive intermediates, requiring multiple steps to arrive to the final product. A far more economical approach using common synthetic scaffolds that can be readily transformed through biomimetic-like pathways to a range of structurally diverse natural products has been evolved in the last decade, leading synthesis to new directions. This tutorial review critically presents the hallmarks in this field.  相似文献   

15.
Alkaloids are an important class of natural products that are widely distributed in nature and produced by a large variety of organisms. They have a wide spectrum of biological activity and for many years were used in folk medicine. These days, alkaloids also have numerous applications in medicine as therapeutic agents. The importance of these natural products in inspiring drug discovery programs is proven and, therefore, their continued synthesis is of significant interest. The condensation discovered by Pictet and Spengler is the most important method for the synthesis of alkaloid scaffolds. The power of this synthesis method has been convincingly proven in the construction of stereochemicaly and structurally complex alkaloids.  相似文献   

16.
Heterocyclic compounds are the omnipresent structural cores comprising many natural and pharmaceutical products of biological significance. Significantly, heterocyclic compounds are widely distributed in nature, and also have applications in agrochemicals, sanitizers, as dyestuff, as copolymers, etc. Among heterocyles, flavonoids are a class of compounds that are highly interesting and constitute many natural products. In general, all flavanoids contains a basic core of C6-C3-C6 of phenyl-benzopyran backbone. The relative placement of the phenyl group on to the benzopyran core makes further classification into flavanoids, isoflavanoids and neoflavanoids. Flavans (2-aryl chroman) are subclass of anthoxanthanes exhibits a broad spectrum of biological properties such as anti-inflammatory, anti-oxidant, and anti-malarial properties. Some representative naturally occurring products possessing flavan core are apigenin, luteolin, tangeretin, scutellarein, etc. On the other hand, some of the notable isoflavan-based natural products are glabridin and (S)-(−)-equol. Glabridin is isolated from Licorice roots, which regulates paraoxonase (PON2) levels. While the simple isoflavan (S)-(−)-equol, is produced from soy isoflavone intake. Also, natural products such as dalbergichromene, centchroman, and (+)-myristinin A possess neoflavan (4-aryl-3,4-dihydro-2H-chromenes) core structure. Owing to their broad biological and pharmacological properties, synthetic chemists are fascinated in developing new routes toward their synthesis. As a result, a decent number of reports have been established in the literature. Thus, for the past 5 years of time frame, many new methodologies have been witnessed, for the synthesis of various flavan systems. This review emphasizes most of the significant methods on accomplishing flavans, isoflavans and neoflavans and also focused on their applications to the synthesis of relevant natural as well as biologically active products.  相似文献   

17.
Bioactive natural products offer multiple opportunities for the discovery of novel chemical entities with potential pharmaceutical, nutraceutical and agrochemical applications. Many new organic compounds with novel scaffolds are isolated in small quantities and established methods often fail to determine the structure and bioactivity of such novel natural products. To meet this challenge, we present here a new methodology combining RDC (residual dipolar coupling)‐based NMR spectroscopy in microtubes, with a motif‐inspired biological assessment strategy. Using only one milligram (ca. 1.5 μmol) of sample, the new protocol established the bioactivity as well as the relative and absolute configuration of vatiparol obtained from Vatica parvifolia. Vatiparol is unique in its unprecedented carbon skeleton and selective inhibitory effect on the expression of monocyte chemo‐attractant protein‐1 (MCP‐1, also known as CCL2). The plausible biosynthetic pathway of vatiparol is briefly discussed. The approach introduced here promises to be widely applicable to the determination of the structure and bioactivity of structurally unknown organic samples available in very limited amounts.  相似文献   

18.
Hydroxyapatite is an elective material for bone substitution. In this outline of our recent activity the crucial role of nanostructured ceramics in the design and preparation of ceramic scaffolds will be described, focussing on our more recent interest in biomimetic apatites, in particular apatites containing HPO42– CO32– and Mg2+ which are similar to the mineral component of bone. The paper describes such nanostructured products and, in particular, innovative synthetic techniques capable of yielding powders with higher reactivity and bioactivity. However, so far the characteristics of artificial bone tissues have been shown to be very different from those of natural bone, mainly because of the absence of the peculiar self-organizing interaction between apatites and the protein component. This causes modification of the structure of apatites and of the features of the overall composite forming human bone tissue. Therefore, attempts to mimic the features and structure of natural bone tissue, leading toward so-called bio-inspired materials, will be speculated upon. New techniques used to reproduce a composite in which a nanosize blade-like crystal of hydroxyapatite (HA) grows in contact with self-assembling fibres of natural polymer will be presented. In this specific case, the amazing ability of biological systems to store and process information at the molecular level, nucleating nanosize apatites (bio-inspired material), is exploited.  相似文献   

19.
A palladium‐catalyzed regiodivergent C1 insertion multicomponent reaction involving aryne, CO, and 2‐iodoaniline is established to construct the scaffolds of phenanthridinone and acridone alkaloids. Regioselective control is achieved under the guidance of selective ligands. The phenanthridinones are solely obtained under ligand‐free condition. In comparison, application of the electron‐abundant bidentate ligand dppm afforded the acridones with high efficiency. The release rate of the aryne from the precursor assists the regioselectivity of insertion as well, which was revealed through interval NMR tracking. A plausible mechanism was suggested based on the control experiments. Representative natural products and two types of natural product analogues were synthesized divergently through this tunable method.  相似文献   

20.
Diversity-oriented synthesis (DOS) has become a powerful synthetic tool that facilitates the construction of nature-inspired and privileged chemical space, particularly for sp3-rich non-flat scaffolds, which are needed for phenotypic screening campaigns. These diverse compound collections led to the discovery of novel chemotypes that can modulate the protein function in underrepresented biological space. In this context, starting material-driven DOS is one of the most important tools used to build diverse compound libraries with rich stereochemical and scaffold diversity. To this end, ene/yne tethered salicylaldehyde derivatives have emerged as a pluripotent chemical platform, the products of which led to the construction of a privileged chemical space with significant biological activities. In this review, various domino transformations employing o-alkene/alkyne tethered aryl aldehyde/ketone platforms are described and discussed, with emphasis on the period from 2011 to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号