首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A FRET-based fluorescence probe was developed for selective detection of H2S in aqueous buffer and inside living cells. For this probe, the FRET probe could be cleaved by H2S, and the fluorescence of FRET donor is released. The probe is highly selective to H2S over other biologically relevant species to give color change for naked eye observation. Confocal imaging indicated that the probe could monitor intracellular H2S level changes.  相似文献   

2.
A two-photon fluorescence turn-on H2S probe GCTPOC–H2S based on a two-photon platform with a large cross-section, GCTPOC, and a sensitive H2S recognition site, dinitrophenyl ether was constructed. The probe GCTPOC–H2S exhibits desirable properties such as high sensitivity, high selectivity, functioning well at physiological pH and low cytotoxicity. In particular, the probe shows a 120-fold enhancement in the presence of Na2S (500 μM), which is larger than the reported two-photon fluorescent H2S probes. The large fluorescence enhancement of the two-photon probe GCTPOC–H2S renders it attractive for imaging H2S in living tissues with deep tissue penetration. Significantly, we have demonstrated that the probe GCTPOC–H2S is suitable for fluorescence imaging of H2S in living tissues with deep penetration by using two-photon microscopy. The further application of the two-photon probe for the investigation of biological functions and pathological roles of H2S in living systems is under progress.  相似文献   

3.
以4-N,N-二乙基氨基水杨醛为原料,制备了2-(苯并噻唑-2-基)-5-(N,N-二乙基氨基)苯酚衍生物(探针L),并对其结构进行了表征。在DMSO/PBS(体积比3∶7,pH=7.4)溶液中,探针L具有高选择性并可荧光"关-开"识别H_2S,在365nm紫外灯照射下,由无荧光变成蓝色荧光。实验表明,探针L识别H_2S的检测限为2.05×10~(-6)mol/L,pH适用范围为6~9,可用于检测实际水样中的H_2S。  相似文献   

4.
本文利用1,4-二乙基-7-羟基四氢喹喔啉-6-甲醛与2-甲基苯并噻唑盐反应制备了荧光探针L,并对其结构进行了表征。实验结果表明,探针L在DMSO溶液中对H_2S具有快速荧光"关-开"响应以及高选择性和较好的抗干扰能力,检测限为2. 5×10~(-6)mol/L。在365nm紫外灯照射下,L的荧光颜色由无荧光变成黄绿色强荧光;此外,加入H_2S后探针L的DMSO溶液颜色由蓝紫色变为无色,通过裸眼即可识别H_2S。  相似文献   

5.
Hydrogen sulfide (H2S), as one of the important endogenous biological regulators, plays a critical role in mediating a wide range of physiological processes. The development of rapid, sensitive, and reliable detection techniques for H2S would be highly appealing. In this paper, a new type of AIE-based fluorescence turn-on probe TPA-M for the detection of H2S has been constructed, involved the rapid release of AIE-based fluorophore TPA-CHO with a remarkable fluorescence turn-on phenomenon in THF/H2O (2/8, v/v, HEPES=20 μM, pH=7.3) medium, exhibiting the attractive advantages such as high sensitivity with the detection limit as low as 1.92×10−3 ppm, excellent selectivity over other anion analytes and biothiols, significant anti-interference ability and fast response time (within 10 min). What's more, the practical application evaluation indicated that the probe TPA-M could be efficiently employed in imaging exogenously added H2S in living MCF-7 cells and detecting H2S in actual water and wine samples.  相似文献   

6.
A ratiometric fluorescent probe for H2S was developed based on a coumarin– benzopyrylium platform. The ratiometric sensing is realized by a selective conversion of acyl azide to the corresponding amide, which subsequently undergoes an intramolecular spirocyclization to alter the large π-conjugated system of CB fluorophore. Compared with the traditional azide-based H2S probes, the proposed probe utilizes the acyl azide as the recognition moiety and exhibits a rapid response (∼1 min) towards H2S, which is superior to most of the azide-based H2S probes. Preliminary fluorescence imaging experiments show that probe 1 has potential to track H2S in living cells.  相似文献   

7.
A novel probe based on the fluorescence off–on strategy was prepared to optically detect hydrogen sulfide (H2S) via an excited state intramolecular proton transfer (ESIPT) mechanism. The probe shows high sensitivity and excellent selectivity to H2S. It also displays a large Stokes shift (∼140 nm) and a remarkable quantum yield enhancement (Ф = 0.412) after interaction with H2S. Moreover, the cellular imaging experiment demonstrated that it has potential utility for H2S sensing in biological sciences.  相似文献   

8.
Hydrogen sulfide (H2S) has been found to be the third most important endogenous gaseous signaling molecule after nitric oxide (NO) and carbonic oxide (CO) and plays crucial roles in living organisms and biological systems. Here we use aggregation- induced emission (AIE) of a small organic molecule (TPE-indo) to detect H2S in both solution and living cells. TPE-indo can target mitochondria and aggregate to fluoresce, which can serve as a sensor for monitoring H2S in the mitochondria. We regulate the fluorescence of AIE molecules by tuning the viscosity of the solution to form TPE-indo nanoparticles, constructing a probe for H2S with good selectivity and high sensitivity. The nucleophilic addition of HS- to the TPE-indo is crucial for the rapid H2S detection. The imaging and analysis of H2S in mitochondria of living cells with the probe demonstrate potential biological applications.  相似文献   

9.
A novel dicoumarin-derived hydrogen sulfide (H2S) selective fluorescent “turn-on” probe 3-(2,4-dinitrobenzenesulfonate)-dicoumarin (DC-HS) created by covalent bonding between the 2,4-dinitrobenzenesulfonyl (DNBS) and the 3-hydroxy-dicoumarin (DC-OH) units. Upon the addition of H2S, the probe DC-HS solution's fluorescence significantly increased, and its appearance is changed from practically colorless to brilliant yellow. Probe DC-HS also showed significant fluorescence amplification that was quantitatively detectable in the concentration range of 0–1.5 μM and had a low detection limit or limit of detection of 0.2 nM. Moreover, with a high recovery rate and excellent accuracy, the developed fluorescent molecule was used successfully for the analysis of H2S in red wine samples.  相似文献   

10.
The toxic gas H2S has recently emerged as one of the important signaling molecules in biological systems. Thus understanding the production, distribution, and mode of action of H2S in biological system is important, but the fleeting and reactive nature of H2S makes it a daunting task. Herein we report a biocompatible, nitro‐functionalized metal–organic framework as reaction‐based fluorescence turn‐on probe for fast and selective H2S detection. The selective turn‐on performance of MOF remains unaffected even in presence of competing biomolecules.  相似文献   

11.
《化学:亚洲杂志》2017,12(24):3187-3194
A dual‐mechanism intramolecular charge transfer (ICT)–FRET fluorescent probe for the selective detection of H2O2 in living cells has been designed and synthesized. This probe used a coumarin–naphthalimide hybrid as the FRET platform and a boronate moiety as the recognition group. Upon the addition of H2O2, the probe exhibited a redshifted (73 nm) fluorescence emission, and the ratio of fluorescence intensities at λ =558 and 485 nm (F 558/F 485) shifted notably (up to 100‐fold). Moreover, there was a good linearity (R 2=0.9911) between the ratio and concentration of H2O2 in the range of 0 to 60 μm , with a limit of detection of 0.28 μm (signal to noise ratio (S/N)=3). This probe could also detect enzymatically generated H2O2. Importantly, it could be used to visualize endogenous H2O2 produced by stimulation from epidermal growth factor.  相似文献   

12.
Hydrogen sulfide (H2S) and hydrogen polysulfides (H2Sn, n>1) are endogenous regulators of many physiological processes. In order to better understand the symbiotic relationship and cellular cross‐talk between H2S and H2Sn, it is highly desirable to develop single fluorescent probes which enable dual‐channel discrimination between H2S and H2Sn. Herein, we report the rational design, synthesis, and evaluation of the first dual‐detection fluorescent probe DDP‐1 that can visualize H2S and H2Sn with different fluorescence signals. The probe showed high selectivity and sensitivity to H2S and H2Sn in aqueous media and in cells.  相似文献   

13.
A 3-indolylacrylate derivative, 3-IA, prepared by connecting an ethyl acrylate in 3-position of indole has been synthesised and characterised. Ethyl acrylate moiety acts as the Michael acceptor towards H2S, and the resultant addition product then participates in intramolecular cyclisation with the ester group at 2-position to form another new heterocyclic ring. Blue fluorescence of 3-IA turned into green in presence of H2S, leading to ratiometric behaviour of the fluorescent sensor with large stokes shift of 55 nm. Probe 3-IA has excellent selectivity towards H2S over other biothiols and other competing anions. Density function theory/time-dependent density function theory calculations were carried out to validate the reaction mechanism and the electronic properties of 3-IA. Importantly, the ratiometric probe 3-IA shows great promise in H2S detection by simple visual fluorescent inspection in filter paper-based protocol. The probe shows its excellent ability to detect H2S in different natural water samples. Furthermore, we have employed our probe to detect H2S for ratiometric imaging in live Vero cell.  相似文献   

14.
A novel H2S-responsive fluorescent probe Rh-Lyso-H2S has been designed and synthesized. The Rh-Lyso-H2S shows high sensitivity and selectivity toward H2S, with a limit of detection of 3.36?×?10?7?M. The reason is that Rh-Lyso-H2S changed from a stable non-conjugated closed-ring lactone conformation with weak fluorescence to a conjugated open-ring conformation with strong fluorescence in the presence of H2S. The Rh-Lyso-H2S has a good lysosome-targeting capacity and is used to detect lysosomal H2S in living cells, which is driven via the protonation of its basic morpholine moiety by acidic lysosomes. Rh-Lyso-H2S is triggered by H2S via removing the thiophenecarboxylate group, and the corresponding activated mechanism of Rh-Lyso-H2S toward H2S is proposed.  相似文献   

15.
Hydrogen sulfide (H2S) is connected with various physiological and pathological functions. However, understanding the important functions of H2S remains challenging, in part because of the lack of tools for detecting endogenous H2S. Herein, compounds Ratio‐H2S 1/2 are the first FRET‐based mitochondrial‐targetable dual‐excitation ratiometric fluorescent probes for H2S on the basis of H2S‐promoted thiolysis of dinitrophenyl ether. With the enhancement of H2S concentration, the excitation peak at λ≈402 nm of the phenolate form of the hydroxycoumarin unit drastically increases, whereas the excitation band centered at λ≈570 nm from rhodamine stays constant and can serve as a reference signal. Thus, the ratios of fluorescence intensities at λ=402 and 570 nm (I402/I570) exhibit a drastic change from 0.048 in the absence of H2S to 0.36 in the presence of 180 μM H2S; this is a 7.5‐fold variation in the excitation ratios. The favorable properties of the probe include the donor and acceptor excitation bands, which exhibit large excitation separations (up to 168 nm separation) and comparable excitation intensities, high sensitivity and selectivity, and function well at physiological pH. In addition, it is demonstrated that the probe can localize in the mitochondria and determine H2S in living cells. It is expected that this strategy will lead to the development of a wide range of mitochondria‐targetable dual‐excitation ratiometric probes for other analytes with outstanding spectral features, including large separations between the excitation wavelengths and comparable excitation intensities.  相似文献   

16.
《中国化学快报》2020,31(12):3149-3152
Considering that hydrogen peroxide (H2O2) plays significant roles in oxidative stress, the cellular signal transduction and essential biological process regulation, the detection and imaging of H2O2 in living systems undertakes critical responsibility. Herein, we have developed a novel two-photon fluorescence turn on probe, named as Pyp-B for mitochondria H2O2 detection in living systems. Selectivity studies show that probe Pyp-B exhibit highly sensitive response toward H2O2 than other reactive oxygen species (ROS) and reactive nitrogen species (RNS) as well as biologically relevant species. The fluorescence colocalization studies demonstrate that the probe can localize in the mitochondria solely. Furthermore, as a bio-compatibility molecule, the highly selective and sensitive of fluorescence probe Pyp-B have been confirmed by its cell imaging application of H2O2 in living A549 cells and zebrafishes under the physiological conditions.  相似文献   

17.
The concomitant detection of two biological events facilitates the highly selective and sensitive analysis of specific biological functions. In this article, we report an AND logic‐gate‐type fluorescent probe that can concurrently sense two biological events in living cells: H2O2 accumulation and acidification. The probe exhibits a unique fluorescence sensing mechanism, in which a xanthene fluorophore is oxidatively transformed to a xanthone derivative by H2O2, thereby resulting in a clear dual‐emission change. This transformation is significantly accelerated under weak acidic conditions, which enables the selective and sensitive detection of H2O2 production in an acidic cellular compartment. This unique sensing property was successfully applied to the ratiometric fluorescence imaging of autolysosome formation in selective mitochondrial autophagy (mitophagy), which highlights the utility of this novel probe in autophagy research.  相似文献   

18.
Precise quantification of trace components in whole blood via fluorescence is of great significance. However, the applicability of current fluorescent probes in whole blood is largely hindered by the strong blood autofluorescence. Here, we proposed a blood autofluorescence-suppressed sensing strategy to develop an activable fluorescent probe for quantification of trace analyte in whole blood. Based on inner filter effect, by screening fluorophores whose absorption overlapped with the emission of blood, a redshift BODIPY quencher with an absorption wavelength ranging from 600–700 nm was selected for its superior quenching efficiency and high brightness. Two 7-nitrobenzo[c] [1,2,5] oxadiazole ether groups were introduced onto the BODIPY skeleton for quenching its fluorescence and the response of H2S, a gas signal molecule that can hardly be quantified because of its low concentration in whole blood. Such detection system shows a pretty low background signal and high signal-to-back ratio, the probe thus achieved the accurate quantification of endogenous H2S in 20-fold dilution of whole blood samples, which is the first attempt of quantifying endogenous H2S in whole blood. Moreover, this autofluorescence-suppressed sensing strategy could be expanded to other trace analytes detection in whole blood, which may accelerate the application of fluorescent probes in clinical blood test.  相似文献   

19.
Development of bioanalytical methods for selective and accurate detection of H2S in living samples is essential for understanding the pathological and physiological functions of this gasotransmitter in biological systems. Here we report a Golgi apparatus-targetable lanthanide complex-based luminescent probe, Golgi-ABTTA-Eu3+/Tb3+, that can be used for accurately determining H2S in aqueous solution and living cells via the ratiometric time-gated luminescence (RM-TGL) technique. This probe is composed of 2,2′:6′,2′′-terpyridine-Eu3+/Tb3+ mixed complexes as the luminophore, 4-azidobenzyl-ether as the responsive moiety, and sulfanilamide as the Golgi apparatus-targeting moiety. Upon reaction with H2S, accompanied by the cleavage of 4-azidobenzyl group from the probe molecule, the long-lived emission of Tb3+ complex at 540 nm is significantly enhanced, while that of Eu3+ complex at 610 nm is obviously reduced. It was noted that the I540/I610 ratio increased by 8.8 times after the probe was exposed to H2S, which enabled H2S to be detected with RM-TGL method. After being incubated with living cells, the probe molecules were selectively accumulated in the Golgi apparatus, which allowed H2S in the Golgi apparatus to be successfully imaged in RM-TGL mode.  相似文献   

20.
Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays intriguing biological roles. To study the biological role of H2S, efficient fluorescent probes are in great demand. For imaging of H2S in deep-tissue, a two-photon probe that emits in the red wavelength region is of choice to avoid the autofluorescence from intrinsic biomolecules. Here, we disclose such a probe, which, developed based on an acetyl benzocoumarin fluorophore, can be excited at 900?nm under two-photon excitation and emit in the red region. The probe shows high reactivity, selectivity, and sensitivity in in vitro assays. Two-photon microscopic imaging of H2S in HeLa cells aided by the probe demonstrates that it is potentially useful to study H2S level changes in cells and tissues influenced by external stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号