首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin crystals of La2O3, LaAlO3, La2/3TiO3, La2TiO5, and La2Ti2O7 have been irradiated in situ using 1 MeV Kr2+ ions at the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), Argonne National Laboratory (ANL). We observed that La2O3 remained crystalline to a fluence greater than 3.1×1016 ions cm−2 at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisation (Tc) of 647 K for LaAlO3, 840 K for La2Ti2O7, 865 K for La2/3TiO3, and 1027 K for La2TiO5. The Tc values observed in this study, together with previous data for Al2O3 and TiO2, are discussed with reference to the melting points for the La2O3-Al2O3 and La2O3-TiO2 systems and the different local environments within the four crystal structures. Results suggest that there is an observable inverse correlation between Tc and melting temperature (Tm) in the two systems. More complex relationships exist between Tc and crystal structure, with the stoichiometric perovskite LaAlO3 being the most resistant to amorphisation.  相似文献   

2.
Two new compounds, La3Ru8B6 and Y3Os8B6, were synthesized by arc melting the elements. Their structural characterization was carried out at room temperature on as-cast samples by using X-ray diffractometry. According to X-ray single-crystal diffraction results these borides crystallize in Fmmm space group (no. 69), Z=4, a=5.5607(1) Å, b=9.8035(3) Å, c=17.5524(4) Å, ρ=8.956 Mg/m3, μ=25.23 mm−1 for La3Ru8B6 and a=5.4792(2) Å, b=9.5139(4) Å, c=17.6972(8) Å, ρ=13.343 Mg/m3, μ=128.23 mm−1 for Y3Os8B6. The crystal structure of La3Ru8B6 was confirmed from Rietveld refinement of X-ray powder diffraction data. Both La3Ru8B6 and Y3Os8B6 compounds are isotypic with the Ca3Rh8B6 compound and their structures are built up from CeCo3B2-type and CeAl2Ga2-type structural fragments taken in ratio 2:1. They are the members of structural series R(A)nM3n−1B2n with n=3 (R is the rare earth metal, A the alkaline earth metal, and M the transition metal). Structural and atomic parameters were also obtained for La0.94Ru3B2 compound from Rietveld refinement (CeCo3B2-type structure, P6/mmm space group (no. 191), a=5.5835(9) Å, c=3.0278(6) Å).  相似文献   

3.
Perovskite type LaCoxFe1−xO3 nanoparticles was synthesized by a sol-gel citrate method. The structural, electrical and sensing characteristics of the LaCoxFe1−xO3 system were investigated. The structural characteristics were performed by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) to examine the phase and morphology of the resultant powder. The XRD pattern shows nanocrystalline solid solution of LaCoxFe1−xO3 with perovskite phase. Electrical properties of synthesized nanoparticles are studied by DC conductivity measurement. The sensor shows high response towards ammonia gas in spite of other reducing gases when x = 0.8. The effect of 0.3 wt.% Pd-doped LaCo0.8Fe0.2O3 on the response and a recovery time was also addressed.  相似文献   

4.
Ethyl anti-4-substituted phenyl-2-oxo-1,3-oxazolidine-5-carboxylates were synthesized stereoselectively in excellent yields using the Ph3P-CCl4-Et3N system by SN2 cyclization of N-Boc-β-amino alcohols. syn to anti conversion of ethyl 4-substituted phenyl-2-oxo-1,3-oxazolidine-5-carboxylates using DBU as base is also described.  相似文献   

5.
During the experiment of preparing ITO (Indium Tin Oxide) nanopowder, a new complex salt crystal K3[InCl6] was found and synthesized using a solution growth method. The diffraction pattern, morphology, element composition and structure of the crystal were analyzed by XRD, SEM and CCD. The results implied that K3[InCl6] is monoclinic, is of the space group P21/c, has a chemical formula of K3[InCl6], a Z = 4 and with the following cell parameters: a = 12.188 Å, b = 7.553 Å, c = 12.703 Å, α = 90.00°, β = 108.96°, γ = 90.00°, V = 1105.98 Å3.  相似文献   

6.
A new ternary compound, U3Co2Ge7, has been synthesized from the corresponding elements by a high temperature reaction using molten tin flux. It crystallizes in the orthorhombic La3Co2Sn7-type (Pearson's symbol oC24, space group Cmmm, No. 65) with lattice parameters determined from single-crystal X-ray diffraction as follows: a=4.145(2) Å; b=24.920(7); c=4.136(2) Å, V=427.2(3) Å3. Structure refinements confirm an ordered structure having two crystallographically inequivalent uranium atoms, occupying sites with dissimilar coordination. U3Co2Ge7 orders ferromagnetically below 40 K and undergoes a consecutive magnetic transition at 20 K. These results have been obtained from temperature- and field-dependent magnetization, resistivity and heat-capacity measurements. The estimated Sommerfeld coefficient γ=87 mJ/mol-U K2 suggests U3Co2Ge7 to be a moderately heavy-fermion material.  相似文献   

7.
β-UP2O7 has been synthesized under hydrothermal conditions (θ=500°C, P=200 MPa), using UO2 and H3PO4. β-UP2O7 crystallizes in the orthorhombic space group Pn21a, with a=11.526 (2) Å, b=7.048 (2) Å, c=12.807 (2) Å and Z=4. Its structure has been determined through direct methods and difference Fourier synthesis and has been refined to R=0.0396. The structure is built on UO8 polyhedral chains along the b-axis. PO43− and P3O105− groups coexist in the structure and the latter groups form non-linear chains. Cohesion of the structure is made through the linkage of UO8 chains by PO4 and P3O10 groups leading to the formula U2(PO4)(P3O10) instead of β-UP2O7. Vibrational and optical spectra confirm the results obtained by X-ray diffraction. DTA-TGA measurements show that the transformation of U2(PO4)(P3O10) to the cubic α-UP2O7 occurs at θ=870°C.  相似文献   

8.
Subsolidus phase relationships in the In2O3-WO3 system at 800-1400°C were investigated using X-ray diffraction. Two binary-oxide phases—In6WO12 and In2(WO4)3—were found to be stable over the range 800-1200°C. Heating the binary-oxide phases above 1200°C resulted in the preferential volatilization of WO3. Rietveld refinement was performed on three structures using X-ray diffraction data from nominally phase-pure In6WO12 at room temperature and from nominally phase-pure In2(WO4)3 at 225°C and 310°C. The indium-rich phase, In6WO12, is rhombohedral, space group (rhombohedral), with Z=1, a=6.22390(4) Å, α=99.0338(2)° [hexagonal axes: aH=9.48298(6) Å, c=8.94276(6) Å, aH/c=0.9430(9)]. In6WO12 can be viewed as an anion-deficient fluorite structure in which 1/7 of the fluorite anion sites are vacant. Indium tungstate, In2(WO4)3, undergoes a monoclinic-orthorhombic transition around 250°C. The high-temperature polymorph is orthorhombic, space group Pnca, with a=9.7126(5) Å, b=13.3824(7) Å, c=9.6141(5) Å, and Z=4. The low-temperature polymorph is monoclinic, space group P21/a, with a=16.406(2) Å, b=9.9663(1) Å, c=19.099(2) Å, β=125.411(2)°, and Z=8. The structures of the two In2(WO4)3 polymorphs are similar, consisting of a network of corner sharing InO6 octahedra and WO4 tetrahedra.  相似文献   

9.
Solid state reactions at 925°C between the high-T c ceramic superconductor YBa2Cu3O7?δ and La2O3 and SrCO3, respectively, mixed in various molar ratiosr=MeOn/YBa2Cu3O7?δ, were studied using X-ray powder diffraction and scanning electron microscopy. The reaction between YBa2Cu3O7?δ and La2O3 yielded (La1?xBax)2CuO4?δ, withx≈0.075?0.10. La2?xBa1+xCu2O6?δ, withx≈0.2?0.25 and La-doped (Y1?xLax)2BaCuO5, withx≈0.10?0.15. Forr=3.0, Y-doped La2BaCuO5 resulted also. The reaction between YBa2Cu3O7?δ and SrCO3 yielded (Sr1?zBaz)2CuO3, withz≈0.1, Y2(Ba1?zSrz)CuO5, withz=0.1?0.15, and a nonsuperconducting compound with an approximate composition of Y(Ba0.5Sr0.5)5Cu3.5O10±δ. At values ofr≤2.0, unsubstituted YBa2Cu3O7?delta was found in the reaction products.  相似文献   

10.
The new nonlinear optical crystal Rb3V5O14 has been synthesized by solid state reaction and characterized by single-crystal X-ray diffraction, IR and thermogravimetric analysis. The crystal Rb3V5O14 crystallizes in the trigonal system with space P31m (No. 157), a=b=8.7134(12) Å, c=5.2807(11) Å and α=90°, β=90°, γ=120°, Z=1, ρ=3.516 g/cm3. It is a layered structure that is very flat and strongly parallel to c. The V5O14 layer structure consists of corner-linked square and triangular pyramids. The layers are separated by Rb+ ions, which fit equally well on the V5O14 layer. The Kurtz powder SHG measurement, using 1064 nm radiation, showed that the second-harmonic generation efficiency of Rb3V5O14 is about two times that of KDP.  相似文献   

11.
Single crystals of K3RESi2O7 (RE=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were grown from a potassium fluoride flux. Two different structure types were found for this series. Silicates containing the larger rare earths, RE=Gd, Tb, Dy, Ho, Er, Tm, Yb crystallize in a structure K3RESi2O7 that contains the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment, while in K3LuSi2O7, containing the smallest of the rare earths, lutetium is found solely in an octahedral coordination environment. The structure of K3LuSi2O7 crystallizes in space group P63/mmc with a=5.71160(10) Å and c=13.8883(6) Å. The structures containing the remaining rare earths crystallize in the space group P63/mcm with the lattice parameters of a=9.9359(2) Å, c=14.4295(4) Å, (K3GdSi2O7); a=9.88730(10) Å, c=14.3856(3) Å, (K3TbSi2O7); a=9.8673(2) Å, c=14.3572(4) Å, (K3DySi2O7); a=9.8408(3) Å, c=14.3206(6) Å, (K3HoSi2O7); a=9.82120(10) Å, c=14.2986(2) Å, (K3ErSi2O7); a=9.80200(10) Å, c=14.2863(4) Å, (K3TmSi2O7); a=9.78190(10) Å, c=14.2401(3) Å, (K3YbSi2O7). The optical properties of the silicates were investigated and K3TbSi2O7 was found to fluoresce in the visible.  相似文献   

12.
Single crystals of a new compound, Ce2Rh3(Pb,Bi)5, have been grown via a flux-growth technique using molten Pb as a solvent. The compound has been characterized by single crystal X-ray diffraction and found to be of the orthorhombic Y2Rh3Sn5 structure type [Cmc21 (No. 36), Z=4] with lattice parameters a=4.5980(2), b=27.1000(17) and c=7.4310(4) Å, with V=925.95(9) Å3. Ce2Rh3(Pb,Bi)5 has a complex crystal structure containing Ce atoms encased in Rh-X (X=Pb/Bi) pentagonal and octagonal channels in [100], with polyanions similar to those found in Ce2Au3In5 and Yb2Pt3Sn5. Magnetization measurements find that Ce2Rh3(Pb,Bi)5 is a quasi-two-dimensional system, where the Ce moments are spatially well-localized. Heat capacity measurements show a transition at the Néel temperature of 1.5 K. Evidence for Fermi surface nesting is found in electrical resistivity measurements, and we argue that Ce2Rh3(Pb,Bi)5 is very near a metal-insulator transition in zero field.  相似文献   

13.
ABO3 amorphous materials, such as BaTiO3 (BT), SrTiO3 (ST), PbTiO3 (PT), and BaxSr1−xTiO3 (BST) have recently attracted a good deal of attention due to their ferroelectric and electro-optical properties. Intense photoluminescence at room temperature was observed in amorphous titanate doped with chromium (BaxSr1−xTi1−yCryO3) prepared by the polymeric precursor method. Results indicated that substantial luminescence at room temperature was achieved with the addition of small Cr contents to amorphous BaxSr1−xTi1−yCryO3. Further addition of Cr or crystallization were deleterious to the intensity of the luminescent peak obtained for excitation using λ=488.0 nm.  相似文献   

14.
The magnetic properties and the magnetocaloric effect are presented for the perovskite-related oxide SrFe0.5Co0.5O3 prepared using electrochemical oxidation. SrFe0.5Co0.5O3 exhibits a second order paramagnetic-ferromagnetic transition close to room temperature (TC=330 K). The maximal magnetic entropy change ΔSMMax , the maximal adiabatic temperature change ΔTad and the refrigerant capacity are found to be equal to respectively 4.0 J/kgK, 1.8 K and 258 J/kg while raising the B-field change from 0 to 5 T.  相似文献   

15.
Su PG  Ren-Jang W  Fang-Pei N 《Talanta》2003,59(4):667-672
The thick film semiconductor sensor for NO2 gas detection was fabricated by screen-printing method using a mixed WO3-based as sensing material. The sensing characteristics, such as response time, response linearity, sensitivity, working range, cross sensitivity, and long-term stability were further studied by using a WO3-based mixed with different metal oxides (SnO2, TiO2 and In2O3) and doped with noble metals (Au, Pd and Pt) as sensing materials was observed. The highest sensitivity for low concentrations (<16 mg l−1) was observed using WO3-based mixed with In2O3 or TiO2. The NO2 gas sensor showing the fastest response and recovery time (both within 2 min), good linearity (Y=0.606X+0.788 R2=0.991) for gas concentrations from 3 to 310 mg l−1, low resistance (3 MΩ), high sensitivity, undesirable cross sensitivity effect and good long-term stability (at least 120 days) using WO3-SnO2-Au as sensing material.  相似文献   

16.
Zinc ferrite nano-powders with a nominal composition of ZnFe2O4 were prepared by combustion synthesis using mixture of urea and ammonium nitrate as fuel. The influence of alumina-doping on the structural, morphological and magnetic properties of ZnFe2O4 nano-particles was investigated by means of X-ray powder diffraction (XRD), infrared (IR) spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and vibrating sample magnetometer (VSM). XRD and IR analyses confirm the cubic spinel phase of ZnFe2O4 nano-particles. The Zn ferrite presented a uniform microstructure with grain size in nano-scale. Alumina-doping brought about a change in the morphology of the as prepared ferrite from sphere-like to regular hexagon. Al2O3-treatment led to a decrease in the coercivity (Hc), magnetization (Ms) and magnetic moment (nB) of the investigated system. The maximum decrease in the values of Hc, Ms and nB due to the treatment with 1.5 wt% Al2O3 attained 13.5, 17.4 and 13.5%, respectively. The observed results can be explained on the basis of particle size and the Fe3+ concentration in the octahedral and tetrahedral sites involved in the cubic spinel structure.  相似文献   

17.
Subsolidus phase equilibria and crystal chemistry were studied for the La2O3-MgO-TiO2 system and for the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3 in the quaternary La2O3-CaO-MgO-TiO2 system. Dielectric properties (relative permittivity and temperature coefficient of resonant frequency, τf) were measured at 5-10 GHz and mapped onto the phase equilibria relations to reveal the compositions of temperature-stable (τf=0) compounds and mixtures. Phase equilibria relations were obtained by X-ray powder diffraction analysis of approximately 80 specimens prepared by solid-state reactions in air at ∼1450°C. Six ternary phases were found to form in the La2O3-MgO-TiO2 system, including the three previously reported compounds LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, and “La6MgTi4O18”; and the new phases La10MgTi9O34, La9Mg0.5Ti8.5O31, and a perovskite-type solid solution (1−x)LaMg1/2Ti1/2O3-xLa2/3TiO3 (0?x?0.5). The phase previously reported as “La6MgTi4O18” was found to form off-composition, apparently as a point compound, at La6Mg0.913Ti4.04O18. Indexed experimental X-ray powder diffraction patterns are given for LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, La6Mg0.913Ti4.04O18, La10MgTi9O34, and La9Mg0.5Ti8.5O31. LaMg1/2Ti1/2O3 exhibits a slightly distorted perovskite structure with ordered B-cations (P21/n; a=5.5608(2) Å, b=5.5749(3) Å, c=7.8610(5) Å, β=90.034(4)°). La5Mg0.5Ti3.5O15 (Pm1; a=5.5639(1), c=10.9928(5) Å) and La6Mg0.913Ti4.04O18 (R3m; a=5.5665(1), c=39.7354(9) Å) are n=5 and n=6 members, respectively, of the (111) perovskite-slab series AnBn−1O3n. The new phases La10MgTi9O34 (a=5.5411(2), b=31.3039(9), c=3.9167(1) Å) and La9Mg0.5Ti8.5O31 (a=5.5431(2), b=57.055(1), c=3.9123(1) Å) are n=5 and n=4.5 members, respectively, of the (110) perovskite-slab series AnBnO3n+2, which exhibit orthorhombic subcells; electron diffraction revealed monoclinic superlattices with doubled c-parameters for both compounds. Extensive perovskite-type solid solutions form in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3. The La2O3-MgO-TiO2 system contains two regions of temperature-stable (τf=0) compositions. The quaternary La2O3-CaO-MgO-TiO2 system contains an extensive single-phase perovskite-type volume through which passes a surface of temperature-stable compositions with permittivities projected to be in the 40-50 range. Traces of this surface occur as lines of τf=0 perovskite-type phases in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3.  相似文献   

18.
A systematic study of the chemical interaction of Ba2YCu3O6+y and Gd3NbO7 was conducted under two processing conditions: purified air (21% po2), and 100 Pa po2 (0.1% po2). Phases present along the pseudo-binary join Ba2YCu3O6z and Gd3NbO7 were found to be in two five-phase volumes within the system. Three common phases that are present in all samples are (Y,Gd)2Cu2O5, Ba(Y,Gd)2CuO5 and Cu2O or CuO (depending on the processing conditions). The assemblies of phases can be categorized in three regions, with Ba2YCu3O6+y: Gd3NbO7 ratios of (I)<5.5:4.5; (II)=5.5:4.5; and (III)>5.5:4.5. The lowest melting temperature of the system was determined to be ≈938 °C in air, and 850 °C at 100 Pa po2. Structure determinations of two selected phases, Ba2(GdxY1−x)NbO6 (Fmm, No. 225), and (GdxY3−x)NbO7 (C2221, No. 20 and Ccmm, No. 63), were completed using the X-ray Rietveld refinement technique. Reference X-ray powder diffraction patterns for selected phases of Ba2(GdxY1−x)NbO6 (x=0.2, 0.4, 0.6, and 0.8) and (GdxY3−x)NbO7 (x=0.6, 1.2, 1.8, 2.4 and 3) have been prepared for inclusion in the Powder Diffraction File (PDF).  相似文献   

19.
Single crystals of Ca3CuRhO6, Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 were synthesized by high temperature flux growth in molten K2CO3 and structurally characterized by single crystal X-ray diffraction. While Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 crystallize with trigonal (rhombohedral) symmetry in the space group , Z=6: Ca3Co1.34Rh0.66O6a=9.161(1) Å, c=10.601(2) Å; Ca3FeRhO6a=9.1884(3) Å, c=10.7750(4) Å; Ca3CuRhO6 adopts a monoclinic distortion of the K4CdCl6 structure in the space group C2/c, Z=4: a=9.004(2) Å, b=9.218(2) Å, c=6.453(1) Å, β=91.672(5). All crystals of Ca3CuRhO6 examined were twinned by pseudo-merohedry. Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are structurally related and contain infinite one-dimensional chains of alternating face-sharing RhO6 octahedra and MO6 trigonal prisms. In the monoclinic modification, the copper atoms are displaced from the center of the trigonal prism toward one of the rectangular faces adopting a pseudo-square planar configuration. The magnetic properties of Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are discussed.  相似文献   

20.
We have prepared a new layered oxycarbide, [Al5.25(5)Si0.75(5)][O1.60(7)C3.40(7)], by isothermal heating of (Al4.4Si0.6)(O1.0C3.0) at 2273 K near the carbon-carbon monoxide buffer. The crystal structure was characterized using X-ray powder diffraction, transmission electron microscopy and energy dispersive X-ray spectroscopy (EDX). The title compound is trigonal with space group R3?m (centrosymmetric), Z=3, and hexagonal cell dimensions a=0.32464(2) nm, c=4.00527(14) nm and V=0.36556(3) nm3. The atom ratios Al:Si were determined by EDX, and the initial structural model was derived by the direct methods. The final structural model showed the positional disordering of one of the three types of Al/Si sites. The reliability indices were Rwp=4.45% (S=1.30), Rp=3.48%, RB=2.27% and RF=1.25%. The crystal is composed of three types of domains with nearly the same fraction, one of which has the crystal structure of space group Rm. The crystal structure of the remaining two domains, which are related by pseudo-symmetry inversion, is noncentrosymmetric with space group R3m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号