首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new fluorescein-based chemodosimeter (II) for Hg2+ ion was designed and synthesized, and it displayed excellent selective and sensitive toward Hg2+ ion over other commonly metal ions in aqueous media. II was a colorless, non-fluorescent compound. Upon addition of Hg2+ to the solution of II, the thiosemicarbazide moiety of II would undergo an irreversible desulfurization reaction to form its corresponding oxadiazole (IV), a colorful and fluorescent product. During this process, the spirocyclic ring of II was opened, causing instantaneous development of visible color and strong fluorescence emission in the range of 500-600 nm. Based on the above mechanism, a fluorogenic Hg2+-selective chemodosimeter was developed. The fluorescence increase is linearly with Hg2+ concentration up to 1.0 μmol L−1 with a detection limit of 8.5 × 10−10 mol L−1 (3σ). Compared with the rhodamine-type chemodosimeter, II is more stable in aqueous media and exhibits higher sensitivity toward Hg2+. The findings suggest that II will serve as a practical chemodosimeter for rapid detection of Hg2+ concentrations in realistic media.  相似文献   

2.
A novel 8-hydroxyquinoline derivative 3 was synthesized. Significant fluorescent quenching was found in the presence of Cu2+ and Hg2+ with notably higher selectivity for Cu2+ than Hg2+.  相似文献   

3.
A fluorescent based receptor (4Z)-4-(4-diethylamino)-2-hydroxybenzylidene amino)-1,2dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (receptor 3) was developed for the highly selective and sensitive detection of Cu2+ and Zn2+ in semi-aqueous system. The fluorescence of receptor 3 was enhanced and quenched, respectively, with the addition of Zn2+ and Cu2+ ions over other surveyed cations. The receptor formed host-guest complexes in 1:1 stoichiometry with the detection limit of 5 nM and 15 nM for Cu2+ and Zn2+ ions, respectively. Further, we have effectively utilized the two metal ions (Cu2+ and Zn2+) as chemical inputs for the manufacture of INHIBIT type logic gate at molecular level using the fluorescence responses of receptor 3 at 450 nm.  相似文献   

4.
A simple Schiff-base derivative with salicylaldehyde moieties as fluorescent probe 1 was reported by aggregation-induced emission (AIE) characterization for the detection of metal ions. Spectral analysis revealed that probe 1 was highly selective and sensitive to Al3+. The probe 1 was also subject to minimal interference from other common competitive metal ions. The detection limit of Al3+ was 0.4 μM, which is considerably lower than the World Health Organization standard (7.41 μM), and the acceptable level of Al3+ (1.85 μM) in drinking water. The Job's plot and the results of 1H-NMR and FT-IR analyses indicated that the binding stoichiometry ratio of probe 1 to Al3+ was 1:2. Probe 1 demonstrated a fluorescence-enhanced response upon binding with Al3+ based on AIE characterization. This response was due to the restricted molecular rotation and increased rigidity of the molecular assembly. Probe 1 exhibited good biocompatibility, and Al3+ was detected in live cells. Therefore, probe 1 is a promising fluorescence probe for Al3+ detection in the environment.  相似文献   

5.
Honglei Mu 《Tetrahedron letters》2007,48(31):5525-5529
A novel two-channel metal ion sensor has been synthesized from macrocyclic dioxotetraamine and 1,8-naphthalimide derivative. The metal ion-selective signaling behaviors of the sensor were investigated. The sensor presented the selective coloration for Cu2+ and Hg2+ that can be detected by the naked-eye, respectively. Besides, the addition of Cu2+ and Hg2+ quenched the fluorescence of 1 obviously and the detection limit was found to be 3 × 10−7 M for Cu2+ and 7 × 10−7 M for Hg2+. This sensor can be utilized for the visual and spectroscopic detection of Cu2+ or Hg2+ in the presence of the other competing metal ions.  相似文献   

6.
Two 4,5-disubstituted-1,8-naphthalimide derivatives 1 and 2 were synthesized as ratiometric fluorescent and colorimetric sensors for Cu2+, respectively. In 100% aqueous solutions of 1, the presence of Cu2+ induces a strong and increasing fluorescent emission centered at 478 nm at the expense of the fluorescent emission of 1 centered at 534 nm. Compound 2 senses Cu2+ by means of a colorimetric (primrose yellow to pink) method with a thorough quench in emission attributed to the deprotonation of the secondary amine conjugated to the naphthalimide fluorophore. 1-Cu2+ and 2-Cu2+ sense cyanide in ratiometric way via colorimetric and fluorescent changes.  相似文献   

7.
A simple quinoline derived probe 3 has been described. Probe 3 having aldehyde function upon interaction with cyanide undergo nucleophilic addition reaction to form cyanohydrin derivative 4 in which fluorescence intensity enhances significantly, ‘turn-on’ by photoinduced electron transfer (PET) OFF–ON mechanism. The color of probe solution switched-on to fluorescent blue which is visible to the naked-eye. Job’s plot analysis revealed a 1:1 stoichiometry for an interaction between 3 and cyanide along with detection limit 0.058 μM (1.5 ppb). The mode of interaction to detect cyanide in aqueous medium through a reaction based chemodosimeter approach has been confirmed by NMR, mass, FTIR, and DFT data analysis.  相似文献   

8.
Based on a boron dipyrromethene (BODIPY) derivative containing an N, O and S tridentate ligand, a Cu2+ fluorescent probe BTCu was developed. The detection mechanism was verified as Cu2+-promoted oxidative dehydrogenation of an amine moiety, leading to a formation of a fluorescent Cu+-Schiff base complex. Free BTCu exhibited a maximum absorption wavelength at 496 nm, and a very weak maximum emission at 511 nm. Upon addition of various metals ions, it showed large fluorescence enhancement toward Cu2+ (417-fold in MeCN and 103-fold in MeCN/HEPES solution, respectively) with high selectivity. The detection limits are as low as 1.74 × 10−8 M and 4.96 × 10−8 M in the two different solutions, respectively. And BTCu could work in a wide pH range with an extraordinary low pKa of 1.21 ± 0.06. Using fluorescence microscopy, the probe was shown to be capable of penetrating into living cells and imaging intracellular Cu2+ changes.  相似文献   

9.
Rhodamine B hydroxylamide (1) is characterized as a highly selective and sensitive fluorescence probe for Cu2+. Under the optimized conditions, the probe exhibits specific absorbance-on and fluorescence-on responses to Cu2+ only. This remarkable property may allow Cu2+ to be detected directly in the presence of the other transition metal ions, and such an application has been demonstrated to human serum. The reaction mechanism is also investigated and proposed as that the hydroxylamide group of 1 binds Cu2+, and the subsequent complexation of Cu2+ displays a high catalytic activity for the hydrolytic cleavage of the amide bond, causing the release of fluorophore (rhodamine B) and thereby the retrievement of absorbance and fluorescence. The recovered fluorescence intensity is proportional to the concentration of Cu2+ in the range 1-20 μM. The detection limit for Cu2+ is 33 nM (k = 3). The reaction mechanism described here may be useful for developing excellent spectroscopic probes with cleavable active bonds for other analytes.  相似文献   

10.
A simple indole-based chemosensor (1) with a very low molecular weight of 207 g mol−1 has been synthesized for the highly reactive and selective detection of CN in aqueous media, even in the presence of other anions, such as F, Cl, Br, AcO, S2S2, SCN, NO2NO2, NO3NO3, CO3CO3, BzO, H2PO4H2PO4, and HSO4HSO4. The sensor achieves rapid detection of cyanide anion in 2 min, and the pseudo-first-order rate constant is estimated as 1.576 min−1. The colorimetric and ratiometric fluorescent response of the sensor to CN is attributable to the addition of CN to the electron-deficient dicyanovinyl group of 1, which prevents intramolecular charge transfer. The sensing mechanism is supported by density functional theory and time-dependent density functional theory calculations. Moreover, sensor 1 exhibits both high accuracy in determining the concentration of CN in real samples and 1-based test strips can conveniently detect CN without any additional equipment. The detection limit of the sensor 1 (1.1 μM) for cyanide is lower than the maximum permissible level of CN (1.9 μM) in drinking water.  相似文献   

11.
Fluorescent Red GK, a commercially available coumarin-based dye, was developed as a “turn-off” fluorescent probe for detection of Cu2+ in aqueous solution. It exhibited high selectivity and sensitivity at room temperature. Upon addition of Cu2+, the strong fluorescence of Fluorescent Red GK was severely quenched and its color changed from orange to colorless under illumination with a UV lamp; the color of the solution also changed from pink to colorless. So, it can be used as a specific colorimetric and fluorescent probe for Cu2+ with a detection limit as low as 0.0634?μM.  相似文献   

12.
通过缩合反应制备了一例席夫碱荧光探针2-喹喔啉甲醛缩2-吡啶酰肼(1),使用核磁共振氢谱和碳谱及质谱等手段表征了探针的结构。荧光光谱分析表明,探针1自身无荧光,而Zn2+能够导致其在500 nm处出现强发射峰。该荧光增强能够在常见阳离子中选择性检测 Zn2+,检测限低至 0.16 μmol·L-1。通过核磁、质谱和紫外等手段推测了探针 1与 Zn2+可能的配位模式。通过单晶X射线衍射解析了1-Zn2+配合物的晶体结构,进一步确认了探针的配位行为。1-Zn2+晶体中探针分别采取ONN和NN配位模式螯合2个Zn2+,并由桥联CH3O-和Cl-连接形成一维链状结构。此外,该探针还可用于活细胞中Zn2+的检测。  相似文献   

13.
Azo 8-hydroxyquinoline benzoate (2) was synthesized and studied to detect metal ions. Distinct color change was found for compound 2 in the presence of transition metal ions Hg2+ or Cu2+ in CH3CN, respectively, which makes it possible for distinguishing Hg2+ and Cu2+ from other metal ions by the ‘naked eye’.  相似文献   

14.
Fluorescent chemosensor 3 can sense Cu2+ ions (1-8 μM) even in the presence of elevated levels of Ni2+, Cd2+, Zn2+, Hg2+, Ag+ and Pb2+ (5000 μM). 3 can also analyze for Ag+ ions (50-500 μM) in the presence of Ni2+, Cd2+, Zn2+, Hg2+ and Pb2+ (5000 μM) but Cu2+ strongly interferes.  相似文献   

15.
A new rhodamine B derivative bearing a hydrazone group has been designed and prepared. The synthesized colorimetric and fluorescent molecular chemosensor can be used as a dual probe, selectively detecting Al3+ and Cu2+ in acetonitrile solution by monitoring changes in the absorption and fluorescence spectral patterns. The results show that Al3+ ions can induce a greater fluorescence enhancement, while the addition of Cu2+ ions induces a strong UV–vis absorption enhancement with weak fluorescence. The limits of detection of Cu2+ and Al3+ were estimated to be 2.9 × 10−7 M and 8.3 × 10−9 M, respectively.  相似文献   

16.
A click generated quinoline derivative (1) has been synthesized and used as a fluorescent probe for sequential recognition of Cu2+ and pyrophosphate (PPi) in DMSO/H2O (1:1, v/v, HEPES 20 mM, pH = 7.4) solution. Probe 1 displays high selectivity to Cu2+ ions, and the in-situ prepared probe 1-Cu2+ exhibits high selectivity toward pyrophosphate (PPi) with emission recovery of probe 1. Therefore, 1-Cu2+ complex can be applied as a fluorescence turn-on probe for PPi with high selectivity and sensitivity.  相似文献   

17.
A new rhodamine B derivative T1 has been rationally synthesized and displayed selective Pd(Ⅱ)-amplified absorbance and fluorescence emission above 540 nm in methanol–water. Upon the addition of Pd(Ⅱ), the spirolactam ring was unfolded and a 1:1 metal-ligand complex formed, which can be used for ‘‘naked-eyes" detection. In addition, fluorescence imaging experiments of Pd~(2+) in HepG2 living cells showed its valuable application in biological systems.  相似文献   

18.
A rhodamine B derivative 4 containing a highly electron-rich S atom has been synthesized as a fluorescence turn-on chemodosimeter for Cu(2+). Following Cu(2+)-promoted ring-opening, redox and hydrolysis reactions, comparable amplifications of absorption and fluorescence signals were observed upon addition of Cu(2+); this suggests that chemodosimeter 4 effectively avoided the fluorescence quenching caused by the paramagnetic nature of Cu(2+). Importantly, 4 can selectively recognize Cu(2+) in aqueous media in the presence of other trace metal ions in organisms (such as Fe(3+), Fe(2+), Cu(+), Zn(2+), Cr(3+), Mn(2+), Co(2+), and Ni(2+)), abundant cellular cations (such as Na(+), K(+), Mg(2+), and Ca(2+)), and the prevalent toxic metal ions in the environment (such as Pb(2+) and Cd(2+)) with high sensitivity (detection limit < or =10 ppb) and a rapid response time (< or =1 min). Moreover, by virtue of the chemodosimeter as fluorescent probe for Cu(2+), confocal and two-photon microscopy experiments revealed a significant increase of intracellular Cu(2+) concentration and the subcellular distribution of Cu(2+), which was internalized into the living HeLa cells upon incubation in growth medium supplemented with 50 muM CuCl(2) for 20 h.  相似文献   

19.
A novel single-armed Salamo-type bisoximes (H4L) has been designed and synthesised. An obvious colour change from yellow (H4L) to pale pink (HL-Pb2+) which can be visually observed by the naked eye in visible light. H4L can act as a fluorescent sensor for ratiometric recognition of Zn2+ with high selectivity and sensitivity. Crystallographic data of the [Cu(HL)(μ-OAc)Cu] reveals that the two Cu2+ ions are both penta-coordinated with square pyramidal geometries, and forms a 2D supramolecular plane structure by hydrogen bonding interactions.  相似文献   

20.
In this work, we synthesised and characterised three novel fluorescence macrocyclic sensors containing optically active dansyl groups. The studies for the interaction of the synthesised compounds with various mental ions (Li+, Na+, K+, Ag+, Mg2+, Ca2+, Ba2+, Pb2+, Zn2+, Co2+, Cd2+, Hg2+, Ni2+, Cu2+, Mn2+, Cr3+, Al3+, Fe3+) were performed by fluorescence titration, Job’s plot, ESI-MS and DFT calculations. The results showed that the sensors 1a–1c displayed selective recognition for Cu2+ and Fe3+ ions and formed stoichiometry 1:1 complex through PET mechanism in DMSO/H2O solution (1:1, v/v, pH 7.4 of HEPES). The binding constant (K) and detection limit were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号