首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ethanol vapor adsorption behavior and the inclusion crystal structure of a 1D-transformable coordination polymer host were characterized. The adsorption jump was observed during phase transition or two-phase equilibrium with abnormal adsorption enthalpy caused by the nature of "mass induced phase transition." The included ethanol guests selectively form O-H...O hydrogen bonded pairs inside channels, suggesting selective construction of a specific cluster/aggregate in pores under control of thermodynamic factors and cooperative intermolecular interactions among the guest and channel surface.  相似文献   

2.
The self-assembled supramolecular complex [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) can act as a molecular host in aqueous solution and bind cationic guest molecules to its highly charged exterior surface or within its hydrophobic interior cavity. The distinct internal cavity of host 1 modifies the physical properties and reactivity of bound guest molecules and can be used to catalyze a variety of chemical transformations. Noncovalent host-guest interactions in large part control guest binding, molecular recognition and the chemical reactivity of bound guests. Herein we examine equilibrium isotope effects (EIEs) on both exterior and interior guest binding to host 1 and use these effects to probe the details of noncovalent host-guest interactions. For both interior and exterior binding of a benzylphosphonium guest in aqueous solution, protiated guests are found to bind more strongly to host 1 (K(H)/K(D) > 1) and the preferred association of protiated guests is driven by enthalpy and opposed by entropy. Deuteration of guest methyl and benzyl C-H bonds results in a larger EIE than deuteration of guest aromatic C-H bonds. The observed EIEs can be well explained by considering changes in guest vibrational force constants and zero-point energies. DFT calculations further confirm the origins of these EIEs and suggest that changes in low-frequency guest C-H/D vibrational motions (bends, wags, etc.) are primarily responsible for the observed EIEs.  相似文献   

3.
A series of clathrates comprising the xanthenol host, 9-(4-methoxyphenyl)-9H-xanthen-9-ol, with a variety of aromatic guests displays similar structures in the space group P(-1). We have elucidated the structures of the inclusion compounds H x 1/2G, where H is 9-(4-methoxyphenyl)-9H-xanthen-9-ol and G is benzene, o-, m- and p-xylene. The structures are isostructural with respect to the host and display consistent (Host)-OH...O-(Host) hydrogen bonding. The guests lie on a centre of inversion and with the exception of the symmetrical guests, benzene and p-xylene, are disordered. An interesting case arises with m-xylene, which is ordered at low temperature (113 K) with both the host and guest molecules in general positions. At a higher temperature (283 K) the inclusion compound with m-xylene fits the series. We have correlated the structures with their thermal stabilities, guest exchange and kinetics of desolvation.  相似文献   

4.
The complex stability constants (Ka) and thermodynamic parameters (DeltaG degrees, DeltaH degrees, and TDeltaS degrees) for 1:1 complexation of water-soluble calix[4]arene, thiacalix[4]arene, and calix[5]arene sulfonates with pyridine and their methylated derivatives have been determined by means of isothermal titration calorimetry at pH 2.0 and 7.2 at 298.15 K, and their binding modes have been investigated by NMR spectroscopy. The results obtained show that sulfonatocalixarenes afford stronger binding ability toward pyridine guests at pH 2.0, attributable to the positive electrostatic interactions and the more extensive desolvation effects, but present higher molecular selectivity at pH 7.2 owing to the strengthened C-H...pi interactions. The pH-responsible binding ability and molecular selectivity are discussed from the viewpoint of electrostatic, pi-stacking, van der Waals interactions and size-fit relationship between host and guest. A close comparison further demonstrates that the C-H...pi interactions and van der Waals interactions play a more important role than pi...pi interactions in the present inclusion complexation.  相似文献   

5.
Crystalline ternary inclusion monolayers consisting of a two-dimensional hydrogen-bonded host network of guanidinium (G) ions and organosulfonate (S) amphiphiles, and biphenylalkane guests, can be generated at the air-water interface through synergistic structural enforcement by hydrogen bonding and host-guest packing. Surface pressure-area isotherms of the 4'-hexadecylbiphenyl-4-sulfonate (C16BPS) amphiphile in the presence of G, with or without guest, are characterized by lift-off molecular areas expected for the GS sheet based on single-crystal X-ray structures of homologous bulk crystals. Intercalation of biphenylalkane guests (4-C(n)()H(2)(n)()(+1)-C(6)H(4)-C(6)H(5), n = 1, 4, 6, 10, 16; denoted CnBP) between organosulfonate hydrophobes, which define pocketlike cavities in the GS monolayer host, afford ternary inclusion monolayers with a 1:1 host-guest stoichiometry. These inclusion monolayers are less compressible than the guest-free host, consistent with dense packing of the biphenylalkane moieties of the host and the biphenylalkane guests. The inclusion monolayers are distinguished from the amorphous guest-free host and from selected guanidinium-free mixed monolayers by structural characterization with grazing-angle incidence X-ray diffraction (GIXD). The GIXD data for the ternary (G)C16BPS:C16BP and (G)C16BPS:C6BP inclusion monolayers obtained upon compression are consistent with a rectangular unit cell. The dimensions of these unit cells and refinement of the GIXD data suggest a "rotated shifted ribbon" GS hydrogen-bonding motif similar to that observed in some bulk GS crystals, including (G)(ethylbiphenylsulfonate). GIXD reveals that (G)C16BPS:C16BP and (G)C16BPS:C6BP are more crystalline than the corresponding guanidinium-free mixed monolayers. The (G)C16BPS:C6BP inclusion monolayer is stable upon compression, even though the alkyl-alkyl host-guest interactions are reduced due to the shorter hexyl substituents of the guest, demonstrating an important reinforcing role for the hydrogen-bonded GS sheet. The structure of a C16BPS:tetracosane (C24) mixed monolayer is independent of G; the unit cell symmetry and dimensions suggest a structure governed by alkyl-alkane interactions that prohibit formation of a GS network. These results illustrate that the existence of ternary inclusion monolayers with an intact GS network requires guest molecules that are structurally homologous with the hydrophobes of the host, in this case biphenylalkanes. The observation of these inclusion compounds suggests an approach for introducing functional nonamphiphilic molecules to an air-water interface through inclusion in a well-defined host.  相似文献   

6.
A series of polycyano-polycadmate (PCPC) host clathrates including a CT complex of methylviologen dication (MV2+) and an aromatic donor as a guest were synthesized, and their crystal structures and spectroscopic properties were investigated. The PCPC host has a framework structure built with Cd2+ ions as coordination centres and cyanides as bridging ligands. This framework host has negative charge and includes a cationic guest together with an ordinary neutral guest. MV2+, which is a strong acceptor, was included as a cationic guest and an aromatic compound, which works as a donor, was included as a neutral guest. Crystal structures of seven clathrates, whose neutral guests were o-cresol, m-cresol, p-cresol, 1-methylnaphthalene, 1,2,4-trimethoxybenzene, pyrrole and aniline, were determined by single crystal X-ray diffraction methods. In all cases MV2+ and the neutral guest formed a CT complex with a face to face stacking structure and were included as a CT complex guest. However, depending on each clathrate the ratio of aromatic donor to MV2+ was different and several variations were found in their PCPC host structures. The clathrates had their own colour depending on their neutral guest. The plot of the CT transition energies estimated from optical CT bands against the ionization potentials of the neutral guests satisfied a linear relationship predicted by Mulliken theory. However, the CT transition energies observed in the clathrates showed a shift to lower energy by ca. 0.6 eV compared with those observed in corresponding acetonitrile solutions.  相似文献   

7.
乙二胺桥联环糊精二聚体的多重识别研究   总被引:1,自引:1,他引:1  
本文合成了由两个乙二胺分子桥联的β-环糊精二聚体(1)。在碱性溶液中1与二价铜离子形成稳定的配合物(2), 根据客体分子被包合前后主、客体质子化学位移的变化研究了水溶液中三个主体分子: β-环糊精、1和2分别与对、间和邻氯苯酚及其钠盐的包合反应。通过比较主-客体包合物生成常数的大小可以推断2与有机阴离子客体之间存在多重识别作用。  相似文献   

8.
The global demand for intelligent sensing of aromatic amines has consistently increased due to concerns about health and the environment. Efforts to improve material design and understand mechanisms have been made, but highly efficient non-contact sensing with host–guest structures remains a challenge. Herein, we report the first example of non-contact, high-contrast sensing of aromatic amines in a hydrogen-bonded organic framework (HOF) based on a nitro-modified stereo building block. Direct observation of binding interactions of trapped amines is achieved, leading to charge separation-induced emission quenching between host and guests. Non-contact sensing of aniline and diphenylamine is realized with quenching efficiencies up to 91.7 % and 97.0 %, which shows potential for versatile applications. This work provides an inspiring avenue to engineer multifunctional HOFs via co-crystal preparations, thus enriching applications of porous materials with explicit mechanisms.  相似文献   

9.
A flexible bipyridinium-linker-based porous host framework with electron-accepting pore surface, namely, [Zn2( L )(pmc)1.5] ⋅ 12 H2O ( 1 ; L⋅ Cl2=1,1′-[1,4-phenylene-bis(methylene)]bis(4,4′-bipyridinium) dichloride, H4pmc=pyromellitic acid) exhibits recognition of phenol and aromatic amine guests based on adsorbent–adsorbate charge-transfer interactions. Significantly, the resultant guest-encapsulated complexes 1@Guests can all be characterized by single-crystal X-ray diffraction. The host framework undergoes a reversible single crystal-to-single crystal transformation in response to the inclusion of different guests with flexible torsional motions of the hexagonal ring and the trapezoid-shaped bipyridinium groups. Such recognition can be visibly monitored and detected by obvious color changes. The host framework could also be recovered, and this suggested that guest sorption/desorption is reversible and that the host framework could be reused in potential applications. This work may provide an effective way to develop porous materials with special emphasis on applications involving guest recognition.  相似文献   

10.
提出了球形主体分子的设计思想,把具有球形结构的分子柏木醇(1)、马钱子碱(2)、三乙烯二胺(1,4-二氮-二环[2.2.2]辛烷(3)作为主体分子,把酚类化合物,诸如苯酚(4)、邻甲苯酚(5)、间甲苯酚(6)、对甲苯酚(7)、对氯苯酚(8)和对硝基苯酚(11)等作为客体分子,进行了主客体分子相素作用实验,采用粉末X射线衍射、1^HNMR等分析手段确认了包结化合物的形成及主客体分子的摩尔比,摩尔比(H/G)分别为(1)+(4)1:1,(1)+(5)1:1,(1)+(6)1:1,(1)+(7)1:1,(1)+(11)1:2,(2)+(11)1:1,(3)+(4)1:2,(3)+(5)1:3,(3)+(6)1:2,(3)+(7)1:2,(3)+(8)1:2,(3)+(11)1:2,对典型包结化合物的单晶,诸如柏木醇和邻甲苯酚、马钱子碱和对硝基苯酚以及三乙烯二胺和对硝基苯酚,进行了四圆X射线衍射结构分析,结果表明,包结化合物的堆砌结构特征随主体分子的体积大小而改变,从隧道型如(1)+(5)和(2)+(11)转变为夹层型如(3)+(11)。用Nd:YAG激光测试晶体的SHG效应,结果表明,大部分包结物晶体具有非线性光学性质。  相似文献   

11.
X-ray crystal structures are reported of a free host compound 1, comprising two diphenylmethanol terminal groups attached to a central 9,10-ethynyl substituted anthracene unit, and of three inclusion compounds of a fluoren-9-ol substituted analogous host 2 with acetone, dimethyl sulphoxide (DMSO) and dimethylformamide (DMF) as guest, respectively. Despite the presence of two hydroxyl groups in 1, there is no O–H...O hydrogen bond between the molecules in the guest free crystal – only weaker C–H...O interactions and van der Waals' type connections. In the inclusion compounds of 2, H-bonded 1:2 host–guest associates are formed, where each of the host hydroxyl groups binds to a guest oxygen atom. The orientations of the host–guest connections in these complexes vary, being E for acetone and Z for both DMSO and DMF guests, relative to the host anthracene unit. The DMSO and DMF inclusion compounds of 2 proved to be isostructural.  相似文献   

12.
A chiral self-assembled supramolecular M(4)L(6) assembly has been shown to be a suitable host for a series of reactive monocationic half-sandwich iridium guests 1, 3, and 4 that are capable of activating C-H bonds. Upon encapsulation, selective C-H bond activation of organic substrates occurs. Precise size and shape selectivity are observed in the C-H bond activation of aldehydes and ether substrates. The reactions exhibit significant kinetic diastereoselectivities. Thermodynamic studies have shown that the iridium starting materials and products are bound strongly by the host assembly. The encapsulation process is largely entropy-driven. Kinetic investigations with water-soluble phosphine traps and added salts have provided evidence for a unique stepwise mechanism of guest dissociation for [4 subset Ga(4)L(6)]. Iridium guest 4 first dissociates from the host cavity to form an ion pair with the host exterior. This species then fully dissociates from the host exterior into the bulk solution. Model ion pair intermediates were characterized directly with (1)H NMR NOESY techniques. The rate of iridium guest dissociation is slower than the rate observed for the C-H bond activation processes, indicating that the selective C-H bond activation reactivity occurs within the cavity of the supramolecular host.  相似文献   

13.
The enclathration selectivity of the host compound 2,2'-dihydroxyl-1,1'-binaphthyl, BINAP, towards the guests quinoline (Q), 2-methylquinoline (2MeQ), 6-methylquinoline (6MeQ) and 8-methylquinoline (8MeQ) were established by competition experiments as: BINAP.2(2MeQ) > BINAP.2Q > BINAP.2(8MeQ) > BINAP.2.5(6MeQ). The crystal structures of the inclusion compounds were elucidated and are all stabilised by (host)O-H...N(guest) hydrogen bonds. Thermal analysis yields the same sequence with respect to the relative stabilities. pH Control was employed to dramatically modify the selectivity profile of the pair of 2-methylquinoline (2MeQ) and 8-methylquinoline (8MeQ).  相似文献   

14.
Interactions between a symmetrical tetramethyl-substituted cucurbit[6]uril (host: TMeQ[6]) and 1,ω-alkylenedipyridine (ω = 2, 4, 6, 8, 10) dicationic guests were investigated using 1H NMR spectroscopy and single crystal X-ray crystallography. In these inclusion complexes, combined cavity and portal binding in TMeQ[6] were observed, and the length of the bridged alkylene was found to play an important role not only in balancing the overall hydrophilic/hydrophobic interaction between the host and the guest, but also in defining the structure of the resulting inclusion complexes. For the guest 1,2-ethylenedipyridine (Edpy), TMeQ[6] includes a positively charged pyridine ring of Edpy to form an unsymmetrical inclusion complex; for the guest 1,4-butylenedipyridine (Bdpy), TMeQ[6] includes a positively charged pyridine ring of Bdpy, but the different competitive interactions in and between the related inclusion complexes could lead to a fast exchange between the hosts and guests. For the guests with longer bridge chains, such as 1,6-hexamethylenedipyridine (Hdpy) or 1,8-octylenedipyridine (Odpy), a stable pseudorotaxane inclusion complex is formed by combining the hydrophobic cavity and the outer portal dipole-ion interactions. However, for 1,10-decatylenedipyridine (Ddpy), the two TMeQ[6] host molecules include the two end pyridine rings of Ddpy and form a dumbbell inclusion complex. Supported by the National Natural Science Foundation of China (Grant Nos. 20662003 & 20767001), the International Collaborative Project of Guizhou Province (Grant No. 2007400108), the Science Technology Fund of Guizhou Province (Grant No. J-2008-2012) and the Natural Science Youth Foundation of Guizhou University (Grant No. 2007-005)  相似文献   

15.
The synthesis of three different nanoscale molecular hosts is reported. These cavitands each possess a highly preorganized cavity with an open portal (nearly 1 nm wide), by which guests can enter and egress the cavity. Additionally, these hosts are deep-functionalized with a crown of weakly acidic benzal C-H groups which can form a variety of noncovalent interactions with guest molecules residing within the cavity. Thirty-one guests were examined for their propensity to form complexes with the hosts. Guests that possess halogen atoms were the strongest binders, suggesting the formation of polydentate C-H triplebond X-R hydrogen bonds with the deep crown of benzal hydrogens. Exchange rates between the free and bound states were noted to be dependent on the size of the guest and the solvent used to study complexation. In general, stronger binding and slower exchange were noted for complexations carried out in DMSO with highly complementary guests. The orientation of each guest within the cavity was determined using either EXSY NMR spectroscopy or (1)H NMR shift data. Cumulatively these results showed that the principal factors directing orientation were interactions with the benzal groups and the type of solvent. Van't Hoff analyses of selected complexations were also carried out. As well as revealing that all complexations were entropically unfavorable, these experiments provided support for guest orientation determinations, and gave an estimation that the formation of a C-H triplebond I-R hydrogen bond releases between 1 and 1.5 kcal mol(-1).  相似文献   

16.
利用^1HNMR技术以及单晶X衍射技术考察对称四甲基取代六元瓜环(TMeQ[6])与几种1,ω-亚烷基吡啶阳离子(ω=2,4,6,8,10)客体的相互作用.在这些包结配合物中,TMeQ[6]的端口效应以及空腔效应同时存在,其主客体作用模式随着客体亚烷基碳链长短不一而各不相同.对于客体1,2-二乙基吡啶(Edpy),TMeQ[6]包结Edpy的带正电荷的吡啶环部分,形成一不对称的包结配合物;对于客体1,4-二丁基吡啶(Bdpy),TMeQ[6]选择性包结Bdpy的吡啶环部分或烷基部分存在竞争作用和快速交换;而具有较长碳链的客体1,6-二己基吡啶(Hdpy)和1,8-二丁庚基吡啶(Odpy)与TMeQ[6]通过空腔的疏水作用以及外部的离子-偶极作用形成稳定的类轮烷包结配合物;客体1,10-二癸基吡啶(Ddpy)的两个吡啶环分别被两个TMeQ[6]包结形成哑铃型的包结配合物.  相似文献   

17.
N‐Alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra‐ and intermolecular hydrogen bonds that leads to cavitand‐like structures. Depending on the upper‐rim substituents, self‐inclusion was observed in solution and in the solid state. The self‐inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self‐included dimers spontaneously reorganize to 1:1 host–guest complexes. These host compounds show an interesting ability to bind a series of N‐alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C?O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl?) and ammonium (NH2+) cations of the hosts, and also through CH ??? π interactions between the hosts and guests. The self‐included and host–guest complexes were studied by single‐crystal X‐ray diffraction, NMR titration, and mass spectrometry.  相似文献   

18.
5-Phenyl-1-methyl-7-bromo-3-hydroxy-1,2-dihydro-3H-1,4-benzodiazepin-2-one and its 5-(o-chloro)-phenyl analog form 2:1 (host:guest) inclusion compounds with benzene. The crystal structures of the compounds were studied by the single-crystal XRD method and were interpreted as host (H) (benzodiazepine) — guest (G) (benzene solvent molecule) complexes. The studied structures, revealing H-H and H-G interactions as both typical hydrogen bonds and π-π, C-H?π weak interactions, may serve as models for ligand-receptor binding.  相似文献   

19.
The preparation and properties of the new hexabromodiquinoline derivative 4 are described. This lattice inclusion host shows a strong preference for trapping small aromatic hydrocarbons. The X-ray crystal structures of the benzene, toluene, o-xylene, and p-xylene compounds are reported, and are analysed from a crystal engineering perspective. Crystallisation of 4 from the dual-nature solvent trifluoromethylbenzene yields the solvent-free material. Comparison of the parent crystal structure with those of its inclusion compounds reveals why inclusion of aromatic hydrocarbon guests is such a favoured process. The high concentration of Br...Br interactions in the structure of pure 4 is diluted and increasingly replaced by aromatic offset face-face (OFF) and aromatic edge-face (EF) interactions in the inclusion compounds, and this results in better lattice packing energies. For toluene, o-xylene, and p-xylene the host-guest ratio is 1:1. Inclusion of the smaller benzene molecule results in a change to 2:3 stoichiometry. This increase in guest content is assisted by replacement of host-host OFF and EF motifs with host-host pi-halogen dimer (PHD) interactions, which provide space for inclusion of the additional guest molecules. These changes result in the most efficient lattice packing of the series for compound (4)2.(benzene)3.  相似文献   

20.
Reaction of 2,7-di-tert-butyl-9,9-dimethyl-4,5-xanthenedicarboxylic acid (1), a Rebek cleft, with 1,2-trans-bis(2-pyridyl)ethylene (2) yields a three-component organic assembly, 2(1).2 (3), of nanoscale dimensions that is held together by 10 cooperative O-H.N, O-H.O, and C-H.O hydrogen bonds. The cleft adopts a planar conformation, by forming an intramolecular O-H.O hydrogen bond, which enables the host to recognize the guest in a coplanar orientation that facilitates the cooperativity displayed by the multiple forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号