首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A non-denaturating isoelectric focusing (ND-IEF) gel electrophoresis protocol has been developed to study and identify uranium (U)–protein complexes with laser ablation–inductively coupled plasma mass spectrometry (LA-ICP MS) and electrospray ionization mass spectrometry (ESI-MS). The ND-IEF-LA-ICP MS methodology set-up was initiated using in vitro U–protein complex standards (i.e., U–bovine serum albumin and U–transferrin) allowing the assessment of U recovery to 64.4?±?0.4 %. This methodology enabled the quantification of U–protein complexes at 9.03?±?0.23, 15.27?±?0.36, and 177.31?±?25.51 nmol U L?1 in digestive gland cytosols of the crayfish, Procambarus clarkii, exposed respectively to 0, 0.12, and 2.5 μmol of waterborne depleted U L?1 during 10 days. ND-IEF-LA-ICP MS limit of detection was 19.3 pmol U L?1. Elemental ICP MS signals obtained both in ND-IEF electropherograms and in size exclusion chromatograms of in vivo U–protein complexes revealed interactions between U- and Fe- and Cu-proteins. Moreover, three proteins (hemocyanin, pseudohemocyanin-2, and arginine kinase) out of 42 were identified as potential uranium targets in waterborne-exposed crayfish cytosols by microbore reversed phase chromatography coupled to molecular mass spectrometry (µRPC-ESI-MS/MS) after ND-IEF separation.
Figure
The paper presents the development of a non-denaturating protocol for the separation of uranium-protein complexes by isoelectric focusing gel electrophoresis (ND-IEF) before their quantitative detection by Laser Ablation coupled to Inductively Coupled Plasma Mass Spectrometry. Potential protein targets of uranium are subsequently identified by liquid chromatography - electrospray mass spectrometry  相似文献   

2.
Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5–1.5 ppm). EB-GII concentrations increased linearly from 1.15?±?0.23 to 10.11?±?0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5–10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17?±?0.05, 0.33?±?0.08, and 0.50?±?0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20?±?0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.
Figure a
?  相似文献   

3.
We report on the detection of trace quantities of melamine (MA) by a colorimetric method that exploits the conformational change of hemin G-quadruplex-DNAzyme. The addition of MA to hemin G-quadruplex-DNAzyme structure containing thymine bases causes the thymine in the DNAzyme to interact with MA via a stable triple H-bond and leads to a conformational change. This, in turn, affects the peroxidase-like activity of hemin which is determined colorimetrically at 450 nm by adding 3,3’,5,5’-tetramethylbenzidine and hydrogen peroxide. The method was applied to the colorimetric determination of MA over a wide range of concentrations (0.2 to 24 μM) with a detection limit of 80 nM. The effect also can be detected with bare eyes. The method was successfully applied to the determination of MA in spiked milk powder.
Figure
A novel, simple and rapid, visual colorimetric method is applied for the detection of melamine with a wide range of 8?×?10?7 M to 1?×?10?3 M and low detection limit of 2.7?×?10?7 M.  相似文献   

4.
This paper describes a reliable and sensitive method for sensing dissolved acetone using doped nanomaterials. Large-scale synthesis of ZnO nanorods (NRs) doped with Co3O4 was accomplished by a solvothermal method at low temperature. The doped NRs were characterized in terms of their morphological, structural, and optical properties by using field-emission scanning electron microscopy coupled with energy-dispersive system, UV-Vis., Fourier transform IR, X-ray diffraction, and Xray photoelectron spectroscopy. The calcinated (at 400 °C) doped NRs are shown to be an attractive semiconductor nanomaterial for detecting acetone in aqueous solution using silver electrodes. The sensor exhibits excellent sensitivity, stability and reproducibility. The calibration plot is linear over a large concentration range (66.8 μM to 0.133 mM), displays high sensitivity (~3.58 μA cm?2 mM?1) and a low detection limit (~14.7?±?0.2 μM; at SNR of 3).
Figure
The present study describes a simple, reliable, accurate, sensitive, and cost effective method for the detection of acetone using solvothermally prepared semiconductor co-doped nanomaterials.  相似文献   

5.
We describe preparation and use of the quaternary ammonium-based α-iodoacetamide QDE and its isotopologue *QDE as reagents for chemoselective derivatization of cellular thiols. Direct addition of the reagents to live cells followed by adduct extraction into n-butanol and analysis by FT-ICR-MS provided a registry of matched isotope peaks from which molecular formulae of thiol metabolites were derived. Acidification to pH 4 during cell lysis and adduct formation further improves the chemoselectivity for thiol derivatization. Examination of A549 human lung adenocarcinoma cells using this approach revealed cysteine, cysteinylglycine, glutathione, and homocysteine as principal thiol metabolites as well as the sulfinic acid hypotaurine. The method is also readily applied to quantify the thiol metabolites, as demonstrated here by the quantification of both glutathione and glutathione disulfide in A549 cells at concentrations of 34.4?±?11.5 and 10.1?±?4.0 nmol/mg protein, respectively.
Figure
?  相似文献   

6.
A composite was prepared from copper and graphene oxide (Cu-GO) by in-situ chemical reduction of a mixture containing GO and Cu(II) ions with potassium borohydride. The morphology and structure of the composite were confirmed by various physicochemical techniques. The materials were used in a tyrosinase-based microbiosensor where the enzyme is immobilized in a biocompatible matrix consisting of poly(ortho-phenylene diamine) and Cu-GO. The composite was deposited on the surface of an 8-μm thick carbon fiber microelectrode. The role of each component in the sensing layer was systematically investigated with respect to the analytical performance of the system. In its optimal configuration, the biosensor demonstrated (a) a sensitivity of 6.1?±?3 nA mM-1 dopamine (DA), (b) a linear response to DA (with a Michaelis-Menten constant of 0.29?±?0.03 mM), (c) good selectivity over ascorbic acid and uric acid, and (d) a high blocking capacity (112.2?±?2 mM) for ascorbic acid.
Figure
Poly(o-phenylenediamine) electropolymerized carbon fiber electrode with sensitivity towards dopamine (DA) is 6.1?±?3 nA mM?1 supported by Cu-GO. The linear range for DA is 0.29?±?0.03 mM with 0.033 μM LOD and fast response time of <8 s with ascorbic acid blocking capacity of 112.2?±?2 mM AA. Studies on different ratio of Glu/Tyr revealed that 10:3 gave best overall response.  相似文献   

7.
Ion pair solid phase extraction was applied to the simultaneous preconcentration of iron and antimony. The ion pairs consisting of FeCl4 ? or SbCl4 ? anions and the benzyldimethyltetradecyl ammonium cation were formed on the surface of multi-walled carbon nanotubes, then eluted with nitric acid, and the elements finally quantified by ETAAS. The adsorption capacities of the impregnated MWCNTs are 9.2 mg g?1 for iron and 27.5 mg g?1 for antimony. The following analytical figures of merit were determined for iron and antimony, respectively: Enrichment factors of 210 and 230, assay precisions of ±5.3 % and ±4.8 %, linear calibration plots from 0.7 to 9.4 and 13.0 to 190 ng L?1, and detection limits of 0.17 and 3.5 ng L?1. The method was applied to the determination of iron and antimony in human hair, synthetic sample, and to the certified reference materials gold ore (MA-1b) and trace elements in water (SRM 1643d).
Figure
?  相似文献   

8.
We report on a fast, simple and accurate method for the determination of proline in urine samples by employing a nanostructured film of conducting polypyrrole for electrochemically controlled solid-phase microextraction, and ion mobility spectrometry (IMS) for detection. This method has the advantages of simple sample preparation and a sensitivity of IMS to proline that is higher than that for other amino acids. The calibration curve is linear in the range of 0.5–60 μg L?1 (4–521 nmol L?1), and the detection limit is 0.2 μg L?1. The electrochemical potentials for uptake and release were optimized. The method was successfully applied to the clean-up and quantitation of trace amounts of proline in urine samples.
Figure
Proline determination by electrochemically controlled solid phase microextraction coupled to ion mobility spectrometry  相似文献   

9.
A certified reference material (CRM), KRISS CRM 108-10-003, has been developed for analysis of acrylamide in potato chips, as a representative of carbohydrate-rich food cooked in high-temperature oil. The material was prepared by grinding commercially available potato chips to a paste which was then homogenized, bottled in 15-g units, and stored at ?70 °C. Certification, homogeneity and stability testing, were carried out by liquid chromatography–isotope-dilution mass spectrometry (ID-LC–MS). A single ID-LC–MS measurement was performed for each of 10 selected units for certification and homogeneity assessment. The mean measurement result for the 10 bottles, 0.455?±?0.012 mg?kg?1, was assigned as the certified value of the CRM. The between-bottle homogeneity was 0.8% of the certified value. The within-bottle homogeneity, tested by measuring three replicate sub-samples from each of three randomly selected bottles, was similar to the between-bottle homogeneity. The stability of the CRM under storage conditions (?70 °C) was tested for 21 months and no change in the acrylamide content was observed within the measurement uncertainty. Stability of the CRM at –20 °C (storage at user’s site) and room temperature (for regular use and transportation) was also tested. Also presented is the newly designed procedure for evaluating the uncertainty of the certified value for the characterization scheme used in this study.
Figure
  相似文献   

10.
We describe a silver(I)-selective carbon paste electrode modified with multi-walled carbon nanotubes and a silver-chelating Schiff base, and its electrochemical response to Ag(I). Effects of reduction potential and time, accumulation time, pH of the solution and the stripping medium were studied by differential pulse anodic stripping voltammetry and optimized. The findings resulted in a method for the determination of silver over a linear response range (from 0.5 to 235 ng?mL?1) and with a detection limit as low as 0.08 ng?mL?1. The sensor displays good repeatability (with the RSD of ±?2.75 % for 7 replicates) and was applied to the determination of Ag(I) in water samples and X-ray photographic films.
Figure
Open circuit accumulation of Ag(I) onto a surface of EHPO-MCPE and determination by Differential pulse anodic stripping voltammetry  相似文献   

11.
We describe a new method for differential-pulse anodic stripping voltammetric determination of thallium(I) using a carbon paste electrode modified with dicyclohexyl-18-crown-6. The effect of supporting electrolyte (type and pH), accumulation and reduction potential, and of time and amount of modifier were investigated by differential pulse anodic stripping voltammetry. A method was then worked out for the determination of thallium at low levels. Under optimized conditions, the response to Tl(I) is linear in the range from 3.0 to 250 ng mL?1. The detection limit is 0.86 ng mL?1. The sensor displays good repeatability (with a relative standard deviation of ±2.70 % for n?=?7) and was applied to the determination of Tl(I) in water, hair samples, and certified reference materials.
Figure
Crown ethers allow only some ions to entry and complex formation that their sizes equal to ether cavity.  相似文献   

12.
Green biosynthesis of nanoparticles and their applications in sensor field is of great interest to the researchers. We report herein a simple green approach for the synthesis of silver nanoparticles (Ag-NPs) using Acacia nilotica Willd twig bark and its application for the detection of 4-nitro phenol (4-NP). The synthesized Ag-NPs were characterized by Transmission electron microscopy, X-ray diffraction and elemental analysis. The size of synthesized Ag-NPs was in the range of 10–50 nm. The Ag-NPs modified electrode shows a high sensitivity and selectivity towards the sensing of 4-NP. The fabricated modified electrode shows a low detection limit of 15 nM on the wider linear response range from 100 nM to 350 μM with the sensitivity of 2.58?±?0.05 μAμM?1 cm?2. In addition, the fabricated sensor shows good repeatability and reproducibility.
Figure
The schematic representation of the fabrication of Ag-NPs and application of 4-nitrophenol sensing  相似文献   

13.
The content of tenuazonic acid in human urine was determined by a stable isotope dilution assay (SIDA) that was recently developed for the analysis of food commodities and extensively re-validated for urine matrix in this study. Linearity of the response curve was proven between molar ratios n(labeled standard)/n(analyte) of 0.02–100. The limits of detection and determination were 0.2 and 0.6 μg/L, respectively. The mean recovery of the stable isotope dilution assay was 102?±?3 % in the range between 1.0 and 100 μg/L. Interassay precision was 6.7 % (relative standard deviation of three triplicate analyses of a human urine sample during 3 weeks). The method was applied to two studies dealing with urinary excretion of tenuazonic acid: In the first study, tenuazonic acid was quantified in the 24-h urine of six volunteers from Germany (three female, three male) in a concentration range of 1.3–17.3 μg/L or 2.3–10.3 ng/mg?1 creatinine, respectively. In the second study, two volunteers (one female, one male) ingested 30 μg tenuazonic acid by consumption of naturally contaminated whole meal sorghum infant cereals and tomato juice, respectively. The urinary excretion of the ingested tenuazonic acid was 54–81 % after 6 h, depending on matrix and volunteer. After 24 h, 87–93 % of the ingested amount of tenuazonic acid was excreted, but the fate of the remaining about 10 % is open. Thus, it is not possible to exclude potential health hazards for the consumer, completely.
Figure
Urinary excretion of tenuazonic acid (TA) by two volunteers (A and B) after ingestion of sorghum infant cereals [1] and tomato juice [2]  相似文献   

14.
The thickness and refractive index of 1,2-dipalmitoyl-sn-glycero-3-phosphatidyl choline (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) monolayers Langmuir--Blodgett (LB) deposited on mica were measured in dry air and bulk water using multiple-beam interferometry (MBI). Measurements of thickness using atomic force microscopy (AFM) of identical monolayers, and X-ray reflectivity (XRR) of the monolayers on quartz were taken for comparison. The measurement of the properties of solid-supported monolayers in dry air allows lipid optical properties to be determined free from solvent effects. The thickness and refractive index measured by MBI were 25.5?±?0.6 Å and 1.485?±?0.007 for DPPE monolayers, and 23.9?±?0.5 Å and 1.478?±?0.006 for DPPC monolayers in dry air. These thicknesses are consistent with the other techniques used in this work as well as other measurements in the literature. The refractive indices of solid-supported lipid monolayers have not been previously measured. The values are higher than previous measurements on black lipid films done by reflectometry, which is attributed to increased lipid packing density and the absence of hydrocarbon solvents. Applying water to the monolayers had no measurable effect on their properties, indicating that any change in hydration was below detection.
Figure
?  相似文献   

15.
Here, we describe a novel method utilizing double stable isotope ultra performance liquid chromatography-tandem mass spectrometry to measure tissue contents and activity of phenylethanolamine N-methyltransferase (PNMT), the enzyme responsible for synthesis of the stress hormone, epinephrine. The method is based on measurement of deuterium-labeled epinephrine produced from the reaction of norepinephrine with deuterium-labeled S-adenosyl-l-methionine as the methyl donor. In addition to enzyme activity, the method allows for determination of tissue contents of PNMT using human recombinant enzyme for calibration. The calibration curve for epinephrine was linear over the range of 0.1 to 5,000 pM, with 0.5 pM epinephrine representing the lower limit of quantification. The calibration curve relating PNMT to production of deuterium-labeled epinephrine was also linear from 0.01 to 100 ng PNMT. Intra- and inter-assay coefficients of variation were respectively 12.8 % (n?=?10) and 10.9 to 13.6 % (n?=?10). We established utility of the method by showing induction of the enzyme by dexamethasone in mouse pheochromocytoma cells and strong relationships to PNMT gene expression and tissue epinephrine levels in human pheochromocytomas. Development of this assay provides new possibilities for investigations focusing on regulation of PNMT, the crucial final enzyme responsible for synthesis of epinephrine, the primary fight-or-flight stress hormone.
Figure
Assay principle of double stale isotope UPLC-MS/MS quantification of tissue content and activity of PNMT  相似文献   

16.
We have prepared calcined silver oxide-doped zinc oxide nanoparticles (NPs) by a hydrothermal method using reducing agents in alkaline medium. The doped NPs were characterized by UV/vis, FTIR, and X-ray photoelectron spectroscopy, and by X-ray powder diffraction and field-emission scanning electron microscopy. The NPs were deposited on microchips to result in a sensor that has a fast response to methanol in the liquid phase. Features include high sensitivity, low-sample volume, reliability, reproducibility, ease of integration, long-term stability, and enhanced electrochemical responses. The calibration plot is linear (r2?=?0.9981) over the 0.25 mmolL?1 to 0.25 molL?1 methanol concentration range. The sensitivity is ~7.917 μA cm?2 mmolL?2, and the detection limit is 71.0?±?0.5 μmolL?1 at a signal-to-noise-ratio of 3.
Figure
Fabrication of highly sensitive (~7.917 μA cm?2) and selective methanol chemical sensor based on hydrothermally prepared silver oxide doped zinc oxide nanoparticles deposited tiny microchips with a detection limit as low as 71.0 μM (at an S/N of 3).  相似文献   

17.
A method based on ultrasound-assisted emulsification–microextraction (USAEME) was proposed in this contribution for the determination of ethyl carbamate (EC) in alcoholic beverages using gas chromatography coupled to triple quadrupole mass spectrometry. To achieve the determination of EC in alcoholic beverages, the influences on the extraction efficiency of type and volume of extraction solvent, temperature, ionic strength, alcohol content, and extraction time were studied, once the extraction solvent had been selected. The optimized conditions were 200.0 μL of chloroform at 30 °C during 5 min with 15 % (m/v) sodium chloride addition. The detection limit, relative standard deviations, linear range, and recoveries under the optimized conditions were 0.03 μg L?1, 4.2–6.1 %, 0.1–50.0 μg L?1, and 80.5–87.9 %, respectively. Moreover, the feasibility of the present method was also validated by real samples. To the best of our knowledge, this is the first time that USAEME has been applied to determine a strongly hydrophilic compound in alcoholic beverages.
Figure
Schematic diagram of EC preconcentration from alcoholic beverages by USAEME. (a) Sample solution containing EC and 15 % (m/v) NaCl, (b) addition of 200 μL of extraction solvent (chloroform) into sample solution, (c) manual shaking 10 s for premix, (d) horizontal sonication emulsification at 30 °C during 5 min, (e) phase separation after centrifugation, and (f) enlarged view of resulting organic phase  相似文献   

18.
The parasite Schistosoma mansoni (Sm) depends exclusively on the salvage pathway for its purine requirements. The enzyme purine nucleoside phosphorylase (PNP) is, therefore, a promising target for development of antischistosomal agents and an assay for screening of inhibitors. To enable this, immobilized SmPNP reactors were produced. By quantification of hypoxanthine by liquid chromatography, kinetic constants (K M) for the substrate inosine were determined for the free and immobilized enzyme as 110 ± 6.90 μmol?L ?1 and 164 ± 13.4 μmol?L ?1 , respectively, indicating that immobilization did not affect enzyme activity. Furthermore, the enzyme retained 25 % of its activity after four months. Non-Michaelis kinetics for the phosphate substrate, and capacity for Pi-independent hydrolysis were also demonstrated, despite the low rate of enzymatic catalysis. Use of an SmPNP immobilized enzyme reactor (IMER) for inhibitor-screening assays was demonstrated with a small library of 9-deazaguanine analogues. The method had high selectivity and specificity compared with screening by use of the free enzyme by the Kalckar method, and furnished results without the need for verification of the absence of false positives.
Figure
A cartoon illustrating the online SmPNP-IMER activity assay  相似文献   

19.
We have developed screen–printed carbon electrodes for the determination of tyramine (Tyr) via plasma amine oxidase. The enzyme was immobilized on the carbon working electrode by cross–linking it with bovine serum albumin using glutaraldehyde. The employment of the mediator hydroxymethylferrocene lowers the working potential to +260 mV (vs. a screen–printed Ag/AgCl reference electrode). The effects of pH, potential and mediator concentration were optimized and resulted in reproducibility and repeatability values of 8.6 % and 8.7 %, respectively. Response is linear in the range from 2 to 164 μM, and the limit of detection is 2.0?±?0.18 μM. The effects of potentially interfering biogenic amines such as putrescine, cadaverine, histamine, spermine, spermidine and tryptamine were also evaluated. The biosensor was successfully applied to the determination of Tyr in cheese.
Figure
Amperometric determination of tyramine using a biosensor based on the immobilization of polyamine oxidase (PAO) enzyme on a disposable screen-printed carbon electrode.  相似文献   

20.
A novel kind of transferrin imprinted polymer particles was synthesized by a hierarchical strategy. First, transferrin was immobilized on silica beads by non-covalent absorption. Then, a pre-polymerization mixture, composed of 1,4-bis(acryloyl)piperazine, methacrylamide, methacrylic acid, ammonium sulfate and polyoxyethylene sorbitan monolaurate, was irrigated into the pores of silica particles, and polymerized at 25 °C. Finally, the silica matrix was etched with ammonium hydrogen fluoride, not only to remove the template protein, but also to expose protein recognition sites on the surface of the imprinted polymer. The binding capacity of the transferrin-imprinted particles is 6.3 mg of protein per gram of material, and the time required to reach adsorption equilibrium was less than 10 min. The imprinting factor of transferrin is ca. 3.3 in the presence of ribonuclease B, cytochrome c and β-lactoglobulin. The results indicate that these imprinted polymer particles can recognize transferrin with good selectivity, high binding capacity and fast mass transfer. They may be applied as an artificial antibody to remove the high abundance proteins in plasma.
Figure
A novel kind of transferrin imprinted polymer particles was synthesized by a hierarchical strategy. Transferrin was immobilized on silica beads by non-covalent absorption. The pre-polymerization mixture was irrigated into the pores of silica particles and polymerized at 25°C. After the removal of the silica matrix and template protein, protein recognition sites were exposed on the surface of the prepared polymer and applied for the transferrin recognition  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号