首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electronic transitions between Kramers doublets are often allowed for σ (x,y) and π(z) electric or magnetic dipole radiation and transverse MCD measures the interference between σ and π transition dipoles. For mixed-valence compounds, transverse MCD measures the interference between electron transfer (z) and single-ion (x,y) transition dipoles.  相似文献   

2.
A ground-state dimer (denoted D(I)) exhibiting a strong absorption maximum at 477 nm (epsilon = 97 000 M(-1)cm(-1)) can form between adjacent BODIPY groups attached to mutant forms of the protein, plasminogen activator inhibitor type 1 (PAI-1). No fluorescence from excited D(I) was detected. A locally high concentration of BODIPY groups was also achieved by doping lipid phases (micelles, vesicles) with BODIPY-labeled lipids. In addition to an absorption band located at about 480 nm, a new weak absorption band is also observed at ca. 570 nm. Both bands are ascribed to the formation of BODIPY dimers of different conformation (D(I) and D(II)). Contrary to D(I) in PAI-1, the D(II) aggregates absorbing at 570 nm are emitting light observed as a broad band centered at about 630 nm. The integrated absorption band of D(I) is about twice that of the monomer, which is compatible with exciton coupling within a dimer. The F?rster radius of electronic energy transfer between a BODIPY excited monomer and the ground-state dimer (D(I)()) is 57 +/- 2 A. A simple model of exciton coupling suggests that in D(I) two BODIPY groups are stacked on top of each other in a sandwich-like configuration with parallel electronic transition dipoles. For D(II) the model suggests that the S(0) --> S(1) transition dipoles are colinear. An explanation for the previously reported (J. Am. Chem. Soc. 1994, 116, 7801) exceptional light spectroscopic properties of BODIPY is also presented. These are ascribed to the extraordinary electric properties of the BODIPY chromophore. First, changes of the permanent electric dipole moment (Delta(mu) approximately -0.05 D) and polarizability (-26 x 10(-40) C m(2) V(-1)) between the ground and the first excited states are small. Second, the S(0) <--> S(1) electronic transition dipole moments are perpendicular to Delta(mu).  相似文献   

3.
Abstract— The dichroism and anisotropy of emission of polyvinyl alcohol (PVA) film with riboflavin (RF) were measured. The short axis of the RF molecule seems to be oriented in the direction of stretching of the film. The transition moment of the weak absorption band at 300 nm is also parallel to this direction, but it forms an angle greater than 50° with the emission oscillator. The transition moments of absorption bands at 440 , 360 and 270 nm are intermediate in direction between long and short axes of the RF molecule. The extinction at 360 nm probably involves more than one electronic transition. Angles between absorption oscillators are very close to those obtained by Song and Kurtin. The mode of orientation of RF molecules suggests appearance of some type of binding between RF and the PVA matrix.  相似文献   

4.
Paulat F  Lehnert N 《Inorganic chemistry》2008,47(11):4963-4976
High-spin (hs) ferric heme centers occur in the catalytic or redox cycles of many metalloproteins and exhibit very complicated magnetic circular dichroism (MCD) and UV-vis absorption spectra. Therefore, detailed assignments of the MCD spectra of these species are missing. In this study, the electronic spectra (MCD and UV-vis) of the five-coordinate hs ferric model complex [Fe(TPP)(Cl)] are analyzed and assigned for the first time. A correlated fit of the absorption and low-temperature MCD spectra of [Fe(TPP)(Cl)] lead to the identification of at least 20 different electronic transitions. The assignments of these spectra are based on the following: (a) variable temperature and variable field saturation data, (b) time-dependent density functional theory calculations, (c) MCD pseudo A-terms, and (d) correlation to resonance Raman (rRaman) data to validate the assignments. From these results, a number of puzzling questions about the electronic spectra of [Fe(TPP)(Cl)] are answered. The Soret band in [Fe(TPP)(Cl)] is split into three components because one of its components is mixed with the porphyrin A2u72-->Eg82/83 (pi-->pi*) transition. The broad, intense absorption feature at higher energy from the Soret band is due to one of the Soret components and a mixed sigma and pi chloro to iron CT transition. The high-temperature MCD data allow for the identification of the Q v band at 20 202 cm(-1), which corresponds to the C-term feature at 20 150 cm(-1). Q is not observed but can be localized by correlation to rRaman data published before. Finally, the low energy absorption band around 650 nm is assigned to two P-->Fe charge transfer transitions, one being the long sought after A1u(HOMO)-->d pi transition.  相似文献   

5.
The magnetic circular dichroism (MCD) spectra of doubly and triply linked fused bisporphyrins (2MD and 2MT, M = Ni, Zn, Cu, Pd, and H2) and triply linked higher oligomers (3ZnT and 4ZnT) have been measured, and their Q-bands assigned based on the results of INDO/s calculations. In contrast to the Faraday A term observed for the Q(0,0) band of Ni(II) tetraphenylporphyrin, a single positive Faraday B term was observed for the lowest energy transition of the fused systems. The calculations indicated that the molecular orbitals (MOs) of the directly fused porphyrins consist of linear combinations of the constituent monomeric MOs, and that the effect of lowering the symmetry is always larger on the lowest unoccupied molecular orbital (LUMO) than on the highest occupied molecular orbital (HOMO). On the basis of Michl's perimeter model, these features can be correlated with the observed positive MCD signs in the near infrared region. A weak absorption band at 600-700 nm for the fused dimers can be assigned to a short-axis polarized Q transition.  相似文献   

6.
Mixed condensation of 1,2-dicyanofullerene (1) and 4,5-dibutyloxyphthalonitrile (2a) in the presence of vanadium(III) chloride (VCl3) in quinoline forms the hexabutyloxy-substituted tribenzotetraazachlorin (TBTAC) - fullerene (C60) vanadyl complex (3). UV-vis absorption and magnetic circular dichroism (MCD) spectroscopy demonstrated that 3 shows two intense Q-band components, whereas the previously reported nickel complex possessing the identical peripheral substituents (4) shows one intense and two medium-intense bands in the 600-800 nm region, indicating that the electronic mixing states of 3 are different from those of the nickel complex (4). The metal effects on electronic structures of the conjugates were interpreted using density functional theory (DFT) calculations.  相似文献   

7.
Gold clusters protected by 3-mercaptophenylboronic acid (3-MPB) with a mean core diameter of 1.1 nm are successfully isolated, and their absorption, magnetic circular dichroism (MCD), and chiroptical responses in metal-based electronic transition regions, which can be induced by surface D-/L-fructose complexation, are examined. It is well-known that MCD basically corresponds to electronic transitions in the absorption spectrum, so simultaneous deconvolution analysis of electronic absorption and MCD spectra of the gold cluster compound is conducted under the constrained requirement that a single set of Gaussian components be used for their fitting. We then find that fructose-induced chiroptical response is explained in terms of the deconvoluted spectra experimentally obtained. We believe this spectral analysis is expected to benefit better understanding of the electronic states and the origin of the optical activity in chiral metal clusters.  相似文献   

8.
Abstract— Chromatophores from Rhodopseudonionas spheroides were treated with potassium iridic chloride so as to destroy the major complement of bacteriochlorophyll (BChl) without harming the photochemically active P870. A band at 802 mμ, attributed to a pigment P800, survived this treatment along with P870. Extraction of such chromatophores with a mixture of acetone and methanol removed the absorption bands of P800 and P870; a corresponding amount of BChl was found in the extract. The yield of BChl was too great to have been derived from either P800 or P870 alone; analysis of extinction cofficients and band areas of these pigments indicates that they are both specialized fornis of BChl, in a molecular ratio of 2P800:1P870. Bleaching of P870, without attenuation of the absorption band of P800, could be effected by adding potassium ferricyanide to the iridic chloride-treated chromatophores. Extraction of chromatophores in this condition gave a reduced yield of BChl, consistent with a 2:1 ratio of P800 to P870 under the assumption that the BChl in the extract was derived in this case from P800 alone. An absorption band at 600 mμ in iridic chloride-treated chromatophores, characteristic of BChl and ascribed to P800 and P870, is partly bleached and shifted to shoiter wavelengths upon illumination. This reversible effect, and a similar one near 375 mμ (corresponding to the Soret band maximum of BChl), has the combined attributes of the blue-shift of P800 and the bleaching of P870 seen in a spectrally resolved form near 800 and 865 mμ respectively. The 600 mμ band is bleached by about 30 per cent, again consistent with a ratio of 2P800:1P870. These data, in conjunction with information published elsewhere, support the view that two molecules of P800 and one of P870 are associated jointly with a photosynthetic reaction center. It was observed that the long wave absorption bands of BChl in vivo are sometimes narrower than the narrowest bands that have been observed for BChl in dilute organic solutions. Sharpness of these bands is most conspicuous in some forms absorbing near 800 mμ.  相似文献   

9.
The position and the intensity of electronic bands are influenced by an electric field. Pronounced changes in the position of absorption bands are mainly due to the dipole moment of the molecule in the ground state and the change in the dipole moment during the excitation process, and pronounced changes in intensity are due to the field dependence of the transition moment, which can be described by the transition polarizability. The effect of an external electric field on the optical absorption (electrochromism) of suitable molecules can be used to determine the dipole moment in the ground state, the change in dipole moment during the excitation process, the direction of the transition moment of the electronic band, and certain components of the transition polarizability tensor. These data largely determine the strong solvatochromism (solvent-dependence of the position and intensity of electronic bands), which is observed in particular with molecules having large dipole moments. Smaller contributions to solvatochromism result from dispersion interactions, which predominate in the case of nonpolar molecules. The models developed have been experimentally checked and verified by a combination of electro-optical absorption measurements (influence of an external electric field on absorption) and investigation of the solvent-dependence of the electronic bands.  相似文献   

10.
Abstract— In this paper we describe the determination of the orientation of the absorption and emission transition dipoles of chlorophyll a and pheophytin a in their molecular frame. For this purpose we have embedded the pigments in anhydrous nitrocellulose films with a concentration of 2 × 10-7 mol/g. We have shown previously that under these conditions the pigments are in a purely monomeric state, are distributed uniformly both before and after stretching and that no intermolecular energy transfer among the molecules takes place.
Using a combination of steady-state anisotropy experiments on unstretched films and angle-resolved fluorescence depolarization measurements on stretched films, we obtain the orientation of the transition dipole moments of both pigments in their molecular frame and the orientational distribution function of the molecules relative to the stretching direction of the film.
The steady-state anisotropy measurements indicate that chlorophyll a has two distinct emission dipole moments and that excitation in the Soret-region results in simultaneous excitation of two or more absorption transition dipole moments. On the other hand, excitation in the QY-band involves only a single dipole moment. The directions of the transition dipole moments in the molecular frame are obtained from the angle-resolved measurements. Pheophytin a also exhibits two emission dipole moments, but the angle between them is much smaller than that between the corresponding dipoles for chlorophyll a . As a consequence the dipole moments contributing to the Soret-region could not be resolved and only an effective absorption transition dipole moment in the Soret-region is extracted.  相似文献   

11.
TaO has been matrix-isolated in an argon matrix at 14 K and 24 K and studied spectroscopically in the visible region (300–850 nm). Both adsorption and magnetic circular dichroism (MCD) spectra have been recorded and analyzed. A determination of the total angular momentum quantum numbers (ω) for fourteen excited electronic states has been made. The g factors for the ground 2Δ32 and excited 2φ52 states have been determined from a moment analysis of the MCD and absorption spectra of the 450.3 nm band. The present study indicates the power of the combination of magnetic circular dichroism and matrix isolation for the assignment of excited electronic states of high temperature molecules.  相似文献   

12.
Using cavity ring-down spectroscopy we measured the collision induced absorption spectrum associated with the a(1)Δ(v = 2) ←X(3)Σ(g)(-)(v = 0) band of oxygen near 922 nm both in pure oxygen and in mixtures of oxygen and nitrogen. For pure oxygen, we report for this band an integrated absorption of (1.56 - 0.04/+0.40) × 10(-5) cm(-2) amg(-2). We find that collisions between oxygen and nitrogen do not result in any measurable CIA signal. At 1 bar of oxygen, this collision induced transition is much stronger than the allowed magnetic dipole and electric quadrupole transitions.  相似文献   

13.
The magnetically perturbed time-dependent density functional theory is used to derive equations for the magnetic circular dichroism (MCD) of degenerate transitions of closed shell molecules. The MCD of this type of transition can be divided into two contributions. The dominant contribution is usually that from A terms that arise because of the breaking of the degeneracy of the excited state in the presence of the magnetic field. The second contribution comes from B terms that arise because of the perturbation of the transition dipole by the magnetic field. The formalism is applied to ten tetrahedral d(0) transition metal oxy- and thioanions. The MCD parameters of these systems are reproduced quite well by the calculations. Simulated spectra derived from the calculated parameters are in good agreement with the observed spectra.  相似文献   

14.
The magnetic circular dichroism (MCD) for the three low-energy absorption bands of the Eu(C2H5SO4)3·9H2O crystal has been measured at room temperature. It may be well understood from the MCD as well as from other experimental results that two of these bands, 7F15D0 and 7F05D1, are of magnetic dipole origin. However, the MCD of another band at about 18650 cm?1, 7F15D1, cannot be interpreted as being only one electric dipole in origin, which has been pointed out by several investigations. The present MCD analysis indicates that although this broad band consists of one electric- and two magnetic-dipole transitions, each of which has a sizeable absorption strength, the MCD spectrum originates exclusively from the two magnetic dipole transitions  相似文献   

15.
In this study, the molecular conformation, vibrational and electronic transition analysis of 2,3-difluorobenzoic acid and 2,4-difluorobenzoic acid (C7H4F2O2) were presented using experimental techniques (FT-IR, FT-Raman and UV) and quantum chemical calculations. FT-IR and FT-Raman spectra in solid state were recorded in the region 4000-400 cm(-1) and 4000-5 cm(-1), respectively. The UV absorption spectra of the compounds that dissolved in ethanol were recorded in the range of 200-800 nm. The structural properties of the molecules in the ground state were calculated using density functional theory (DFT) and second order M?ller-Plesset perturbation theory (MP2) employing 6-311++G(d,p) basis set. Optimized structure of compounds was interpreted and compared with the earlier reported experimental values. The scaled vibrational wavenumbers were compared with experimental results. The complete assignments were performed on the basis of the experimental data and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. A study on the electronic properties, such as absorption wavelength, excitation energy, dipole moment and frontier molecular orbital energy, were performed by time dependent DFT (TD-DFT) approach. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands of steady compounds were discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecules.  相似文献   

16.
An assignment of the near-infrared bands in the 600–800 nm spectral region observed in magnetic circular dichroism (MCD) spectra of high-spin ferrous haemoproteins is presented. The assignment is based on a relative energy level scheme for iron d-electrons, a comparison of predicted and measured temperature dependences of MCD intensity, a sign of MCD bands and a group theoretical analysis of allowed transitions. The proposed assignment is consistent with the ∼15-nm red shift of the ∼760 nm band on breakage of the Fe-His bond in deoxy-myoglobin at low pH, with low-temperature photolysis experiments available for CO complexes of several haemoproteins. In accordance with the observations, the intensity of the MCD bands for proteins with a sulphur anion of cysteine as proximal haemligand (cytochrome P450 and chloroperoxidase) is predicted to be diminished by at least one order of magnitude compared to that for proteins with an imidazole of a histidine as a protein-derived haemligand (i.e. myoglobin, haemoglobin and horseradish peroxidase). Received: 4 February 1997 / Accepted: 1 May 1997  相似文献   

17.
The magnetic circular dichroism (MCD) spectrum of gas phase acetylene has been studied in the spectral region 320-140 nm. No MCD signal was detected in the region of the first transition. The observation of irregular MCD bands beginning at 185 nm confirm assignment of this latter band as the 0-0 band of the second transition. The discrete and relatively narrow bands in the region 155-140 nm exhibit pure A-term character, lending unambiguous confirmation to the assignment of 1Πu for the state. The observed absorption spectrum in this region is interpreted as consisting of two non-interacting systems, one involving the 1Πu Rydberg state and the other, a broad continuous background, cannot be assigned. It is however suggested that it may be due to the 1Σu+ state of the π → π* excited configuration.  相似文献   

18.
The UV visible spectra obtained after simultaneous cocondensation of silver and holmium atoms with argon matrices at 9 K have been studied in the 200-800 nm region. While no new feature can be observed upon deposition, selective irradiation into both silver or holmium atomic absorptions results in growth of a new band at 430 nm, associated with formation of a mixed silver holmium species, tentatively assigned as AgHo. To support the assignment of the observed bands ab initio quantum chemical calculations were carried out for the dinuclear and trinuclear silver and holmium species, using pseudopotential approaches. Results for the electronic excitation energies and corresponding transition dipole moments for the diatomic molecules Ag2, Ho2, AgHo provide evidence that the 430 nm band should be attributed to the mixed cluster AgHo (theoretical band position at 436 nm), while the doublets at 498/504 and 558/563 nm belong to the homonuclear species Ho2 (theoretical values are at 482 and 562 nm). First conclusions are drawn with respect to the formation of the metal trimers Ho3, Ag2Ho, AgHo2.  相似文献   

19.
There has been a considerable interest in the chiroptical properties of molecules whose chirality is exclusively due to an isotopic substitution and numerous examples for the electronic circular dichroism (CD) spectra of isotopically chiral systems have been reported in literature. Four different explanations have been proposed for the mechanism as to how the isotopic substitution induces a chiral perturbation of the otherwise achiral electronic wave function; however, up to now no conclusive answer has been given about the dominating effect responsible for the experimental observations. In this study we will present, for the first time, fully quantum-mechanical calculations of the CD spectra of three different molecular systems with isotopically engendered chirality. As examples, we consider the spectra of organic molecules with ketone and alpha-diketone carbonyl and diene chromophores. The effect of vibronic couplings for the reorientation of the electric and magnetic transition dipole moments is taken into account within the Herzberg-Teller approximation. The ground and excited state geometries and vibrational normal modes are obtained with (time-dependent) density functional theory [(TD)DFT], while the vibronic coupling effects are calculated at the TDDFT and density functional theory/multireference configuration interaction (DFT/MRCI) levels of theory. Generally, the band shapes of the experimental CD spectra are reproduced very well, and also the absolute CD intensities from the simulations are of the right order of magnitude. The sign and the intensity of the CD band are determined by a delicate balance of the contributions of a large number of individual vibronic transitions, and it is found that the vibrational normal modes with a large displacement are dominant. The separation of the calculated CD spectrum into the different contributions due to the overlap of the in-plane and out-of-plane components (regarding the symmetry plane of the unsubstituted molecule) of the electric and magnetic transition dipole moments yields information about the influence of the vibronic coupling effects for the reorientation of the corresponding transition dipole moments. In conclusion, the calculations clearly show that vibronic effects are responsible or at least dominant for the chiroptical properties of isotopically chiral organic molecules.  相似文献   

20.
The pump-probe polarization anisotropy is computed for molecules with a nondegenerate ground state, two degenerate or nearly degenerate excited states with perpendicular transition dipoles, and no resonant excited-state absorption. Including finite pulse effects, the initial polarization anisotropy at zero pump-probe delay is predicted to be r(0) = 3/10 with coherent excitation. During pulse overlap, it is shown that the four-wave mixing classification of signal pathways as ground or excited state is not useful for pump-probe signals. Therefore, a reclassification useful for pump-probe experiments is proposed, and the coherent anisotropy is discussed in terms of a more general transition dipole and molecular axis alignment instead of experiment-dependent ground- versus excited-state pathways. Although coherent excitation enhances alignment of the transition dipole, the molecular axes are less aligned than for a single dipole transition, lowering the initial anisotropy. As the splitting between excited states increases beyond the laser bandwidth and absorption line width, the initial anisotropy increases from 3/10 to 4/10. Asymmetric vibrational coordinates that lift the degeneracy control the electronic energy gap and off-diagonal coupling between electronic states. These vibrations dephase coherence and equilibrate the populations of the (nearly) degenerate states, causing the anisotropy to decay (possibly with oscillations) to 1/10. Small amounts of asymmetric inhomogeneity (2 cm(-1)) cause rapid (130 fs) suppression of both vibrational and electronic anisotropy beats on the excited state, but not vibrational beats on the ground electronic state. Recent measurements of conical intersection dynamics in a silicon napthalocyanine revealed anisotropic quantum beats that had to be assigned to asymmetric vibrations on the ground electronic state only [Farrow, D. A.; J. Chem. Phys. 2008, 128, 144510]. Small environmental asymmetries likely explain the observed absence of excited-state asymmetric vibrations in those experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号