首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The univariate and multivariate calibration methods were applied for the simultaneous determination of iodate and periodate in water. The method is based on the reaction of periodate and iodate with pyrogallol red in sulfuric acid media. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of pyrogallol red at 470 nm. The calibration curve was linear over the concentration ranges of 0.1-12 and 0.1-14 μg ml−1 for iodate and periodate, respectively. The experimental calibration matrix for partial least squares (PLS) and orthogonal signal correction (OSC-PLS) method was designed with 35 mixtures. The results obtained by the PLS and OSC-PLS were statistically compared. The effects of various cations and anions on iodate and periodate determination have been investigated.  相似文献   

2.
A kinetic spectrophotometric method for the simultaneous determination of iodate and periodate in mixtures was proposed. The method is established on the different kinetic behaviours of the analytes which react with starch–iodide in the presence of sodium chloride in sulfuric acid medium. The kinetic data were collected from 260 to 900 nm every 10 nm, within a time range of 0–180 s at 1 s interval, and the absorbance collected at 291, 354 and 585 nm, respectively, increased linearly with the concentration between 0.1–1.2 mg L− 1 for both iodate and periodate. The mechanism investigation revealed that the iodate/periodate–iodide–starch system is a consecutive reaction. Subsequently, the mathematical model for the quantitative kinetic determination based on the consecutive reactions by utilizing chemometric methods was deduced, and the simultaneous determination of synthetic mixtures of iodate and periodate was then applied. Kinetic data collected at 291, 354 and 585 nm, were processed by chemometric methods, such as classical least square (CLS), principal component regression (PCR), partial least square (PLS), back-propagation artificial neural network (BP-ANN), radial basis function–artificial neural network (RBF-ANN) and principle component–radial basis function–artificial neural network (PC-RBF-ANN). The results showed that calibration model with the data collected at 354 nm had some advantages for the prediction of the analytes as compared with the ones of other two wavelengths, and the PLS and PC-RBF-ANN gave the lower prediction errors than other chemometric methods. The proposed method was applied to the simultaneous determination of iodate and periodate in several real samples; and the standard addition method yielded satisfactory recoveries in all instances.  相似文献   

3.
4.
We have developed a novel method for the determination of iodate based on the carboxymethyl cellulose-capped CdS quantum dots (QDs). Factors affecting the iodate detection were investigated, and the optimum conditions were determined. Under the optimum conditions, the relative fluorescence intensity of CdS quantum dots was linearly proportional to IO3 over a concentration range from 1.0 × 10−8 to 1.0 × 10−5 mol L−1 with a correlation coefficient of 0.9987 and a detection limit of 6.0 nmol L−1. Iodide, being oxidized by bromine to form iodate, was detected indirectly. The method was successfully applied to the determination of iodate and total amount of iodine in table salt samples. The related mechanism was also discussed.  相似文献   

5.
Afkhami A  Zarei AR 《Talanta》2001,53(4):815-821
A rapid, simple and sensitive differential kinetic method is presented for the determinations of periodate and iodate ions. The method is based on their reaction with iodide in the presence of methylene blue. The reactions can be monitored spectrophotometrically by measuring the decrease in absorbance at 665 nm. Two sets of conditions were established that in one set of conditions only periodate reacted with iodide but in the other set both the ions reacted with iodide during the first 180 s after initiation of the reaction. The data were evaluated by proportional equations. The method allowed the determination of periodate and iodate at concentrations between 0.1 and 1.0 and 0.1 and 1.3 mug ml(-1), respectively. The method was applied to the determination of periodate and iodate in tap water and spring water with satisfactory results.  相似文献   

6.
A rapid, simple, precise and accurate method is proposed for the determination of ternary mixtures of periodate-iodate-bromate based on their reaction with iodide ion at different pH values. The absorbance was measured at 352 nm. Three sets of reaction conditions were developed. In the first set of conditions, only periodate reacted with iodide, but in the second set the periodate and iodate reacted with iodide and in the third set the three ions reacted with iodide during the first 3 min after initiation of the reaction. The method could be used for individual determinations of periodate, iodate and bromate in the concentration range of 0.05-8.0 microg/ml, 0.05-5.0 microg/ml and 0.2-12 microg/ml, respectively. The data were evaluated by simultaneous equations.  相似文献   

7.
Afkhami A  Zarei AR 《Talanta》2003,60(1):63-71
The H-point standard addition method (HPSAM), based on spectrophotometric measurement, for simultaneous determination of periodate-bromate and iodate-bromate mixtures is described. This method is based on the difference between the rates of their reactions with iodide in acidic media. The results showed that simultaneous determinations could be performed with the ratio 1:15-12:1 for periodate-bromate and 15:1-1:15 for iodate-bromate. The proposed method was successfully applied to the simultaneous determination of periodate-bromate and iodate-bromate in water and synthetic samples.  相似文献   

8.
A simple procedure was developed to prepare a glassy carbon electrode modified with single-wall carbon nanotubes (SWCNTs) and Os(III)-complex. The glassy carbon (GC) electrode modified with CNTs was immersed into Os(III)-complex solution (direct deposition) for a short period of time (60 s). 1,4,8,12-Tetraazacyclotetradecane osmium(III) chloride, (Os(III)LCl2)·ClO4, irreversibly and strongly adsorbed on SWCNTs immobilized on the surface of GC electrode. Cyclic voltammograms of the Os(III)-complex-incorporated-SWCNTs indicate a pair of well defined and nearly reversible redox couple with surface confined characteristic at wide pH range (1-8). The surface coverage (Γ) and charge transfer rate constant (ks) of the immobilized Os-complex on SWCNTs were 3.07 × 10−9 mol cm−2, 5.5 (±0.2) s−1, 2.94 × 10−9 mol cm−2, 7.3 (±0.3) s−1 at buffer solution with pH 2 and 7, respectively, indicate high loading ability of SWCNTs for Os(III) complex and great facilitation of the electron transfer between electroactive redox center and carbon nanotubes immobilized on the electrode surface. Modified electrodes showed higher electrocatalytic activity toward reduction of BrO3, IO3 and IO4 in acidic solutions. The catalytic rate constants for catalytic reduction bromate, periodate and iodate were 3.79 (±0.2) × 103, 7.32 (±0.2) × 103 and 1.75 (±0.2) × 103 M−1 s −1, respectively. The hydrodynamic amperometry of rotating modified electrode at constant potential (0.3 V) was used for nanomolar detection of selected analytes. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantage of this sensor.  相似文献   

9.
Iridium oxide nanoparticles are grown on a glassy carbon electrode by electrodepositing method. The electrochemical behavior and electrocatalytic activity of modified electrode towards reduction of iodate and periodate are studied. The reductions of both ions occur at the unusual positive peak potential of 0.7 V vs. reference electrode. The modified electrode is employed successfully for iodate and periodates detection using cyclic voltammetry, hydrodynamic amperometry and flow injection analysis (FIA). In the performed experiments, flow injection amperometric determination of iodate and periodate yielded calibration curves with the following characteristics: linear dynamic range up to 100 and 80 μM, sensitivity of 140.9 and 150.6 nA μM−1 and detection limits of 5 and 36 nM, respectively. The repeatability of the modified electrode for 21 injections of 1.5 μM of iodate solution is 1.5%. The interference effects of NO2, NO3, ClO3, BrO3, ClO4, SO42−, Cu2+, Zn2+, Mn2+, Mg2+, Cd2+, Ca2+, Na+, K+, NH4+ and K+, CH3COO and glucose were negligible at the concentration ratio of more than 1000. The obtained attractive analytical performance together with high selectivity and simplicity of the proposed method provide an effective and e novel modified electrode to develop an iodate and periodate sensor. Sensitivity, selectivity, the liner concentration range and the detection limit of the developed sensor are all much better than all known similar sensors in the literature for iodate and periodate determination.  相似文献   

10.
Xie Z  Zhao J 《Talanta》2004,63(2):339-343
A very simple and sensitive reverse flow injection method is described for the determination of iodate and iodide. The iodate reacts with excess iodide in acidic medium to form tri-iodide, which can be spectrophotometrically monitored at 351 nm, and the absorbance is directly related to the concentration of iodate in the sample. The determination of iodide is based on oxidizing iodide to iodate. The calibration curve is linear in the range of 0.02-3.0 μg ml−1 I with r2=0.9998, and the limit of detection is 0.008 μg ml−1 I. The chemical and flow injection variables were studied and optimized to make the procedure suitable for quantitating iodate and iodide in table salts. It is shown that the reverse flow injection analysis could greatly improve the sensitivity and precision for determination of iodate with a relative standard deviation of 0.9%. A complete analysis, including sampling and washing, could be performed in 35 s. The procedure was applied successfully to the determination of iodate and iodide in table salts, and the results were statistically compared with results determined by standard iodometry method.  相似文献   

11.
建立了用硅胶整体柱和直接电导检测的离子对色谱快速分析碘离子的方法。采用Chromolith Speed ROD RP-18e色谱柱,以氢氧化四丁铵(离子对试剂)-邻苯二甲酸+乙腈(有机改进剂)为淋洗液,讨论了离子对试剂浓度、有机改进剂浓度、pH、流速和色谱柱温度对碘离子保留的影响。确定最佳色谱条件为:0.25 mmol/L氢氧化四丁铵-0.18 mmol/L邻苯二甲酸+体积分数7%乙腈(pH5.5)作为淋洗液,流速6.0 mL/min,色谱柱温30℃。在此条件下,碘离子的保留时间在0.5 min之内,其它常见阴离子(Cl-、NO3-、SO42-)及SCN-、ClO4-不干扰测定。方法的检出限为0.86 mg/L,标准曲线的线性范围为1.6~85.0 mg/L,峰面积的相对标准偏差为2.3%。将方法应用于测定地下水和果汁中的碘离子,加标回收率为98.5%~104.2%。  相似文献   

12.
13.
The production of iodine by reaction of iodate and iodide in acidic solution is used for the spectrophotometric determination of 1–6 × 10?5 M iodate, 2–8 × 10?3 M iodide, and ca. 10?3 M acids. The sample is injected into a carrier stream containing the other two ions. The injection rate is ca. 100 h?1.  相似文献   

14.
We developed capillary zone electrophoresis with transient isotachophoresis (ITP) as an on-line concentration procedure for simultaneous determination of iodide and iodate in seawater. The effective mobility of iodide was decreased by addition of 20 mM cetyltrimethylammonium chloride to an artificial seawater background electrolyte so that transient ITP functioned for both iodide and iodate. Limits of detection for iodide and iodate were 4.0 and 5.0 microg/l (as iodine) at a signal-to-noise ratio of 3. Values of the relative standard deviation of peak area, peak height, and migration times for iodide and iodate were 2.9, 1.3, 1.0 and 2.3, 2.1, 1.0%, respectively. The proposed method was applied to simultaneous determination of iodide and iodate in seawater collected at a pond at our university.  相似文献   

15.
A new HPLC method for the fully automatic determination of aromatic sulfonates in aqueous samples is presented. The analytical procedure consists of an on-line combination of ion-pair extraction (IPE) and ion-pair chromatography (IPC), both using RP-C18 solid-phase material and a tetrabutylammonium salt as ion pairing reagent. Experimental details and performance data are given. This method is suited for the trace-level determination of a wide variety of benzene, naphthalene, anthraquinone and stilbene sulfonates. Detection limits for surface water using a diode-array detector are in the sub-ppb range. For naphthalene sulfonates a very good selectivity and minimal detectable limits of 0.02 μg/L or even lower can be achieved. So far, this method has been successfully applied to waste water, river water, bank filtrate, and water from different steps of drinking water production. The fate of several aromatic sulfonates has been studied beginning at the effluents of industrial waste water treatment plants and ending after activated carbon filtration in a water works. Napthalene-1,5-disulfonate (NDS, Armstrong acid) and cis-4,4′-dinitrostilbene-2,2′-disulfonate (DNS) appear in the raw water of the investigated water works and therefore have to be termed as relevant to water works. In contrast to other disulfonates NDS is extremely stable to biodegradation and ozonation and it is even desorbed from a highly loaded activated carbon filter.  相似文献   

16.
One of the main challenges in the molecularly imprinted polymers (MIP) field is the proper MIP design for water-soluble compounds because of appearance of serious drawbacks in polar solvents and insolubility of those compounds in non-polar solvents which are commonly used for MIP synthesis. In this work a novel and simple method for synthesis of molecularly imprinted polymers for a water-soluble compound was introduced. Pyridoxine was chosen as a target molecule and the ion-pair complex formed between pyridoxine ion (Py+) and dodecyl sulfate ion (DS) was transferred into the chloroform via liquid-liquid extraction. Then polymerization was carried out in chloroform. The molecular mechanics and density functional theory were proposed to screen proper monomer. Binding energy, ΔE, of a template and a monomer as a measure of their interaction was considered. Ion-pair [Py+-DS] was supposed as a template molecule and acrylic acid, methacrylic acid, allyamine, vinylpridine and 2-hydroxy ethyl methacrylate were as tested monomers. The MIP synthesized using acrylic acid showed the highest selectivity to pyridoxine as predicted from the ΔE calculation. The obtained MIP showed very high affinity against vitamin B6 in comparison to non-imprinted polymers (NIP). It was proved that the obtained MIP with introduced method was much better than that prepared in methanol as porogen. It was showed that the MIP prepared by this new method could be used as an adsorber for extraction and determination of pyridoxine in real and synthetic samples.  相似文献   

17.
A sensitive and selective procedure for the spectrophotometric determination of thallium is described. The method is based on the formation of an ion-pair between [TlCl(4)](-) and the pyronine G cation in chloride-containing acid media. The ion-pair is extracted into benzene and permits the determination of as low as 0.3 mug of thallium in a final volume of 25 ml at 530 nm. The system obeys Beer's law in the concentration range 1-14 mug of thallium in a final volume of 25 ml. Potassium iodate was found to be highly effective for the oxidation of Tl(I) to Tl(III) and the presence of excess oxidant does not interfere. The method can be used for the determination of thallium in high purity cadmium, cadmium sponge and rock samples.  相似文献   

18.
A non-suppressed ion chromatography (IC) with inductively coupled plasma mass spectrometry (ICP-MS) has been developed for simultaneous determination of trace iodate and iodide in seawater. An anion-exchange column (G3154A/101, provided by Agilent) was used for the separation of iodate and iodide with an eluent containing 20 mM NH4NO3 at pH 5.6, which reduced the build-up of salts on the sampler and skimmer cones. The influences of competing ion (NO3) in the eluent on the retention time and detection sensitivity were investigated to give reasonable resolution and detection limits. Linear plots were obtained in a concentration range of 5.0–500 μg/L and the detection limit was 1.5 μg/L for iodate and 2.0 μg/L for iodide. The proposed method was used to determinate iodate and iodide in seawaters without sample pre-treatment with exception of dilution.  相似文献   

19.
The proposed flow-injection determination of nonionic surfactants of the general type RO(CH2CH2O)nH (where R is an alkyl or alkylphenyl group and n is the number of moles of oxyethylene group) is based on extraction of the colored ion-pair product formed between the nonionic surfactant and the regent tetrabromophenolphthalein ethyl ester potassium salt (TBPE-K). The complex is extracted into 1,2-dichloroethane and measured at 609 nm. A new phase separator is described. Triton X-100 is used as a model compounds, for which response is linear in the range 2–60 mg l?1. Precision of the method is excellent with a relative standard deviation of <1.0%. The sensitivity of the method depends on the type of surfactant examined.  相似文献   

20.
Size separation of silver nanoparticles was investigated in counter-current chromatography (CCC) based on a unique step-gradient extraction process. Carboxylate anions were modified on silver nanoparticles to produce water-dispersible nanoparticles. The aqueous nanoparticles were readily transferred to the organic phase (toluene/hexane = 1:1, v/v) together with the phase transfer catalyst, tetraoctylammonium bromide (TOAB), owing to the ion-pair adduct formation between silver nanoparticle anions and tetraoctylammonium cations. Smaller nanoparticles were found to be more readily transferred to the organic phase compared to larger nanoparticles. Various concentrations of TOAB in the organic elution phase were used in the CCC extraction experiments. It appeared that a concentration of 0.02 mM of TOAB was adequate to achieve optimum separation and recovery for the aqueous Ag nanoparticle sample (1.5 mg) in the CCC extraction experiments. Samples of 15.8 ± 5.3 nm were separated; the distributions of four fractions collected were 13.7 ± 1.9, 14.1 ± 3.5, 19.2 ± 4.3, and 22.2 ± 4.9 nm. Compared with the stepwise extraction performed in this study, the step-gradient extractions using CCC provided much better size discrimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号