首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new gravitational model for dark energy is presented based on the model of de Sitter gauge theory of gravity. In the model, in addition to the cosmological constant, the homogeneous and isotropic torsion and its coupling with curvature play an important role for dark energy. The model may supply the universe with a natural transit from decelerating expansion to accelerating expansion.  相似文献   

2.
In this study, we consider new model of dark energy based on Taylor expansion of its density and calculate the Hubble expansion parameter for various parameterizations of equation of state. This model is useful to probe a possible evolving of dark energy component in comparison with current observational data.  相似文献   

3.
In this paper, author studied homogeneous and anisotropic Bianchi type-V universe filled with matter and holographic dark energy (DE) components. The exact solutions to the corresponding Einstein’s field equations are obtained for exponential and power-law volumetric expansion. The holographic dark energy (DE) EoS parameter behaves like constant, i.e. ω Λ =?1, which is mathematically equivalent to cosmological constant (Λ) for exponential expansion of the model, whereas the holographic dark energy (DE) EoS parameter behaves like quintessence for power-law expansion of the model. A correspondence between the holographic dark energy (DE) models with the quintessence dark energy (DE) is also established. Quintessence potential and dynamics of the quintessence scalar field are reconstructed, which describe accelerated expansion of the universe. The statefinder diagnostic pair {r,s} is adopted to characterize different phases of the universe.  相似文献   

4.
A cosmological model of dark energy interacting with dark matter and another general component of the universe is investigated. We found general constraints on these models imposing an accelerated expansion. The same is also studied in the case for holographic dark energy.  相似文献   

5.
The definition of the Galileon gravity form is extended to the Brans-Dicke theory. Given, the framework of the Galileon theory, the generalized ghost dark energy model in an anisotropic universe is investigated. We study the cosmological implications of this model. In particular, we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy in Bianchi type I model. We also probe observational constraints by using the latest observational data on the generalized ghost dark energy models as the unification of dark matter and dark energy. In order to do so, we focus on observational determinations of the Hubble expansion rate(namely, the expansion history) H(z). As a result, we show the influence of the anisotropy(although low) on the evolution of the universe in the statefinder diagrams for Galileon gravity.  相似文献   

6.
We investigate the tachyon scalar filed model of dark energy in the framework of Gauss-Bonnet cosmology. We consider a spatially non-flat universe containing interacting tachyon dark energy with pressureless dark matter. We obtain the equation of state and deceleration parameters. We also reconstruct the potential and the dynamics for the tachyon scalar field model, which describe accelerated expansion of the universe.  相似文献   

7.
In this article, the analysis of Tsallis holographic dark energy(which turns into holographic dark energy for a particular choice of positive non-additivity parameter δ) in modified f(T, B) gravity with the validity of thermodynamics and energy conditions for a homogeneous and isotropic FLRW Universe has been studied. The enlightenment of the field equation towards f(T,B)=αT~m+βB~n, made possible by the fact that the model is purely accelerating,corresponds to q=-0.54(Mamon and Das 2017 Eur. Phys.J.C 77 49). The generalized second law of thermodynamics is valid not only for the same temperature inside the horizon, but also for the apparent horizon for a change in temperature. The essential inspiration driving this article is to exhibit the applicability that the holographic dark energy achieved from standard Tsallis holographic dark energy and the components acquired from f(T, B) gravity are identical for the specific bounty of constants. The analysis of energy conditions confirms that the weak energy condition and the null energy condition are fulfilled throughout the expansion, while violation of the strong energy condition validates the accelerated expansion of the Universe.With the expansion, the model becomes a quintessence dominated model. The dominant energy condition is not observed initially when the model is filled with genuine baryonic matter,whereas it appears when the model is in the quintessence dominated era.  相似文献   

8.
We study the holographic dark energy model in a generalized scalar tensor theory. In a universe filled with cold dark matter and dark energy, the effect of potential of the scalar field is investigated in the equation of state parameter. We show that for a various types of potentials, the equation of state parameter is negative and transition from deceleration to acceleration expansion of the universe is possible.  相似文献   

9.
In this paper we consider holographic dark energy model with interaction in the flat space-time with non-zero cosmological constant. We calculate cosmic scale factor and Hubble expansion parameter by using the time-dependent dark energy density. Then, we obtain phenomenological interaction between holographic dark energy and matter. We fixed our solution by using the observational data.  相似文献   

10.
We present a new model of dark energy which could explain the observed accelerated expansion of our Universe. We show that a five-dimensional Einstein–Yang–Mills theory defined in a flat Friedmann–Robertson–Walker universe compactified on a circle possesses degenerate vacua in four dimensions. The present Universe could be trapped in one of these degenerate vacua. With the natural requirement that the size of the extra dimension could be of the GUT scale or smaller, the energy density difference between the degenerate vacua and the true ground state can provide us with just the right amount of dark energy to account for the observed expansion rate of our Universe.  相似文献   

11.
Exploring the recent expansion history of the universe promises insights into the cosmological model, the nature of dark energy, and potentially clues to high energy physics theories and gravitation. We examine the extent to which precision distance-redshift observations can map out the history, including the acceleration-deceleration transition, and the components and equations of state of the energy density. We consider the ability to distinguish between various dynamical scalar field models for the dark energy, as well as higher dimension and alternate gravity theories. Finally, we present a new, advantageous parametrization for the study of dark energy.  相似文献   

12.
In this work we investigate the background dynamics when dark energy is coupled to dark matter with a suitable interaction in the universe described by Loop quantum cosmology. Dark energy in the form of Generalized Cosmic Chaplygin gas is considered. A suitable interaction between dark energy and dark matter is taken into account in order to at least alleviate (if not solve) the cosmic coincidence problem. The dynamical system of equations is solved numerically and a stable scaling solution is obtained. A significant attempt towards the solution of the cosmic coincidence problem is taken. The statefinder parameters are also calculated to classify the dark energy model. Graphs and phase diagrams are drawn to study the variations of these parameters. It is seen that the background dynamics of Generalized Cosmic Chaplygin gas is completely consistent with the notion of an accelerated expansion in the late universe. From the graphs, generalized cosmic Chaplygin gas is identified as a dark fluid with a lesser negative pressure compared to Modified Chaplygin gas, thus supporting a ‘No Big Rip’ cosmology. It has also been shown that in this model the universe follows the power law form of expansion around the critical point, which is consistent with the known results. Future singularities that may be formed in this model as an ultimate fate of the universe has been studied in detail. It was found that the model is completely free from any types of future singularities.  相似文献   

13.
By considering the logarithmic correction to the energy density, we study the behavior of Hubble parameter in the holographic dark energy model. We assume that the universe is dominated by interacting dark energy and matter and the accelerated expansion of the universe, which may be occurred in the early universe or late time, is studied.  相似文献   

14.
In this paper, we study holographic Ricci dark energy model with non-constant c 2 term in dark energy density formula. We consider FRW metric in flat space-time and calculate density. Also we find scale factor and Hubble expansion parameter.  相似文献   

15.
The model of holographic dark energy in which dark energy interacts with dark matter is investigated in this paper. In particular, we consider the interacting holographic dark energy model in the context of a perturbed universe, which was never investigated in the literature. To avoid the large-scale instability problem in the interacting dark energy cosmology, we employ the generalized version of the parameterized post-Friedmann approach to treating the dark energy perturbations in the model. We use the current observational data to constrain the model. Since the cosmological perturbations are considered in the model, we can then employ the redshift-space distortions (RSD) measurements to constrain the model, in addition to the use of the measurements of expansion history, which has never been done in the literature. We find that, for both the cases with \(Q=\beta H\rho _\mathrm{c}\) and with \(Q=\beta H_0\rho _\mathrm{c}\), the interacting holographic dark energy model is more favored by the current data, compared to the holographic dark energy model without interaction. It is also found that, with the help of the RSD data, a positive coupling \(\beta \) can be detected at the \(2.95\sigma \) statistical significance for the case of \(Q=\beta H_0\rho _\mathrm{c}\).  相似文献   

16.
There is now strong observational evidence that the expansion of the Universe is accelerating. The standard explanation invokes an unknown "dark energy" component. But such scenarios are faced with serious theoretical problems, which has led to increased interest in models where instead general relativity is modified in a way that leads to the observed accelerated expansion. The question then arises whether the two scenarios can be distinguished. Here we show that this may not be so easy, demonstrating explicitly that a generalized dark energy model can match the growth rate of the Dvali-Gabadadze-Porrati model and reproduce the 3+1 dimensional metric perturbations. Cosmological observations are then unable to distinguish the two cases.  相似文献   

17.
We explore the cosmological implications of the interactions among the dark particles in the dark SU(2) R model. It turns out that the relevant interaction is between dark energy and dark matter, through a decay process. With respect to the standard ΛCDM model, it changes only the background equations. We note that the observational aspects of the model are dominated by degeneracies between the parameters that describe the process. Thus, only the usual Λ CDM parameters such as the Hubble expansion rate and the dark energy density parameter (interpreted as the combination of the densities of the dark energy doublet) could be constrained by observations at this moment.  相似文献   

18.
In this work, we have presented a cosmological model in five dimensional spherically symmetric space-time with energy momentum tensors of minimally interacting fields of dark matter and holographic dark energy in Brans–Dicke theory. Under some realistic assumptions in consistent with the present cosmological observations, we have analyzed the field equations to obtain their exact solutions. With particular choices of the constants involved, the values of the overall density parameter and the Hubble’s parameter are obtained to be very close to the latest observational values. We obtain a model universe experiencing super exponential expansion which will be increasingly dark energy dominated in the far future. A comprehensive presentation of the physical as well as kinematical aspects of the parameters, including future singularity, in comparison with the present observational findings is also provided.  相似文献   

19.
The dark sector of the Universe is beginning to be clarified step by step. If the dark energy is vacuum energy, then 123 orders of this energy are reduced by ordinary physical processes. For many years, these unexplained orders were called a crisis of physics. There was indeed a “crisis” before the introduction of the holographic principle and entropic force in physics. The vacuum energy was spent on the generation of new quantum states during the entire life of the Universe, but in the initial period of its evolution the vacuum energy (78 orders) were reduced more effectively by the vacuum condensates produced by phase transitions, because the Universe lost the high symmetry during its expansion. Important problems of physical cosmology can be solved if the quarks, leptons, and gauge bosons are composite particles. The dark matter, partially or all consisting of familon-type pseudo-Goldstone bosons with a mass of 10—5–10–3 eV, can be explained in the composite model. Three generations of elementary particles are absolutely necessary in this model. In addition, this model realizes three relativistic phase transitions in a medium of familons at different redshifts, forming a large-scale structure of dark matter that was “repeated” by baryons. We predict the detection of dark energy dynamics, the detection of familons as dark matter particles, and the development of spectroscopy for the dark medium due to the probable presence of dark atoms in it. Other viewpoints on the dark components of the Universe are also discussed briefly.  相似文献   

20.
It is speculated how dark energy in a brane world can help reconcile an infinitely cyclic cosmology with the second law of thermodynamics. A cyclic model is described, in which dark energy with w<-1 equation of state leads to a turnaround at a time, extremely shortly before the would-be big rip, at which both volume and entropy of our Universe decrease by a gigantic factor, while very many independent similarly small contracting universes are spawned. The entropy of our model decreases almost to zero at turnaround but increases for the remainder of the cycle by a vanishingly small amount during contraction, empty of matter, then by a large factor during inflationary expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号