首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Localized (1)H NMR spectroscopy using the 90 degrees -t(1)-180 degrees -t(1)+t(2)-180 degrees -t(2)-Acq. PRESS sequence can lead to a signal loss for the lactate doublet compared with signals from uncoupled nuclei which is dependent on the choice of t(1) and t(2). The most striking signal loss of up to 78% of the total signal occurs with the symmetrical PRESS sequence (t(1)=t(2)) at an echo time of 2/J (approximately 290 ms). Calculations have shown that this signal loss is related to the pulse angle distributions produced by the two refocusing pulses which leads to the creation of single quantum polarization transfer (PT) as well as to not directly observable states (NDOS) of the lactate AX(3) spin system: zero- and multiple-quantum coherences, and longitudinal spin orders. In addition, the chemical shift dependent voxel displacement (VOD) leads to further signal loss. By calculating the density operator for various of the echo times TE=n/J, n=1, 2, 3,..., we calculated quantitatively the contributions of these effects to the signal loss as well as their spatial distribution. A maximum signal loss of 75% can be expected from theory for the symmetrical PRESS sequence and TE=2/J for Hamming filtered sinc pulses, whereby 47% are due to the creation of NDOS and up to 28% arise from PT. Taking also the VOD effect into account (2 mT/m slice selection gradients, 20-mm slices) leads to 54% signal loss from NDOS and up to 24% from PT, leading to a maximum signal loss of 78%. Using RE-BURP pulses with their more rectangular pulse angle distributions reduces the maximum signal loss to 44%. Experiments at 1.5 T using a lactate solution demonstrated a maximum lactate signal loss for sinc pulses of 82% (52% NDOS, 30% PT) at TE=290 ms using the symmetrical PRESS sequence. The great signal loss and its spatial distribution is of importance for investigations using a symmetrical PRESS sequence at TE=2/J.  相似文献   

3.
NMR and MRI have been applied to transport processes, that is, net flow and diffusion/perfusion, of water in whole plants, cells, and porous materials. By choosing proper time windows and pulse sequences, magnetic resonance imaging can be made selective for each of the two transport processes. For porous media and plant cells the evolution of the spatial distribution of excited spins has been determined by q-space imaging, using a 20 MHz pulsed 1H NMR imager. The results of these experiments are explained by including spin-relaxation and exchange at boundaries. A 10 MHz portable 1H NMR spectrometer is described, particularly suitable to study the response of net flow in plants and canopies to changing external conditions.  相似文献   

4.
《Magnetic resonance imaging》1998,16(9):1023-1032
The “concept of restricted intracellular water diffusion at permeable boundaries,” which was recently used to model diffusion-weighted 1H NMR experiments on glioma cells, was applied to measurements on the rat brain in vivo. Combined with the “concept of extracellular tortuosity,” various physiological states of the brain were simulated. Hereby, a variable intracellular volume fraction, intracellular exchange time, and extracellular tortuosity factor were considered for young, adult, and ischemic rat brains. The model simulated the cytotoxic shift of extracellular water, changes in membrane permeability and tissue morphology, and was able to explain the diffusion time dependence as well as the non-monoexponentiality of the diffusion attenuation curves. Preliminary diffusion time dependent experiments on the healthy rat brain (1H NMR imaging) agreed well with the theoretical concept. Hereby, the intracellular water signal was separated from extracellular signal contributions by large diffusion weighting. It showed the characteristic of restricted diffusion as well as a signal decay due to the exchange of intracellular water across the plasma membrane. A map of the mean intracellular exchange time for water in living animal brain was determined, and the upper limit in rat brain was evaluated to 15 ms. The presented methods can be applied to correlate local differences in a map of exchange times with tissue morphology and to detect pathological deviations of the exchange time, e.g., during ischemia.  相似文献   

5.
In cell and tissue samples, water is normally three orders of magnitude more abundant than other metabolites. Thus, water suppression is required in the acquisition of NMR spectra to overcome the dynamic range problem and to recover metabolites that overlap with the broad baseline of the strong water resonance. However, the heterogeneous cellular environment often complicates water suppression and the strong coupling of water to membrane lipids interferes with the NMR detection of membrane associated lipid components. The widely used water suppression techniques including presaturation and double pulsed field gradient selective echo result in more than a 70% reduction in membrane associated lipid components in proton spectra of cells and tissues compared to proton spectra acquired in the absence of water suppression. A water suppression technique based on the combination of selective excitation pulses and pulsed field gradients is proposed to use in the acquisition of high resolution MAS NMR spectra of tissue specimens and cell samples. This pulse sequence methodology enables efficient water suppression for intact cells and tissue samples and eliminates signal loss from cellular metabolites.  相似文献   

6.
Summary Water proton spin-lattice relaxation and self-diffusion in aqueous solutions of human serum albumin have been studied by1H NMR as a function of the protein concentration. Spin-lattice relaxation data, which display a nonlinear behaviour with the protein concentration, could be fitted with a two-phase model taking into account the experimentally determined hydration (?bound?) water values. Despite a similar trend is registered for the water self-diffusion coefficient, such a model has been found unable to explain the related experimental data taken as a function of the biomolecule concentration. On the other hand, the solute-induced proton self-diffusion decrease could be satisfactorily interpreted by postulating an enhanced probability of hydrogen-bond formation occurring within the ?vicinal? water surrounding the biomolecules for several hydration shells. The consistency within the two models is discussed in connection with the magnetic interactions occurring within the solute-solvent systems.  相似文献   

7.
Under fast MAS conditions, techniques for 1H signal selection and suppression, which have originally been developed for solution-state NMR, become applicable to solids. In this work, we describe how WATERGATE and DANTE pulse sequences can be used under MAS to selectively excite or suppress peaks in 1H solid-state spectra. As known from the liquid-state analogues, signal selection and/or suppression is supported by pulsed-field gradients which selectively dephase and rephase transverse magnetisation. Under MAS, the required field gradients are provided by a simple pair of coils which have been built into a standard fast-MAS probe. PFG-assisted techniques enable efficient selection or suppression of 1H peaks in a single transient of the pulse sequence without the need for phase cycles. Therefore, these tools can readily be incorporated into solid-state MAS NMR experiments, which is demonstrated here for 1H-1H double-quantum NMR spectra of supramolecular systems. In the examples presented here, the 1H signals of interest are relatively weak and need to be observed despite the presence of the strong 1H signal of long alkyl sidechains. PFG-assisted suppression of this strong perturbing signal is shown to be particularly useful for obtaining unambiguous results.  相似文献   

8.
The calculation scheme for periodic solutions in an rf-driven Josephson junction including interference current is derived by using the incremental harmonic balance method. The approximate analytical expressions of stable and unstable periodic orbits are obtained. The stability and bifurcation of the periodic solutions are analyzed based on Floquet theory. The results show that, with the increase of the driving amplitude, one of the periodic solutions undergoes symmetry-breaking and period-doubling bifurcation, which leads to chaos eventually. However, the other periodic solution of the system disappears via a saddle-node bifurcation.  相似文献   

9.
Long echo time (TE=270 ms) in vivo proton NMR spectra resembling human brain metabolite patterns were simulated for lineshape fitting (LF) and quantitative artificial neural network (ANN) analyses. A set of experimental in vivo 1H NMR spectra were first analyzed by the LF method to match the signal-to-noise ratios and linewidths of simulated spectra to those in the experimental data. The performance of constructed ANNs was compared for the peak area determinations of choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals using both manually phase-corrected and magnitude spectra as inputs. The peak area data from ANN and LF analyses for simulated spectra yielded high correlation coefficients demonstrating that the peak areas quantified with ANN gave similar results as LF analysis. Thus, a fully automated ANN method based on magnitude spectra has demonstrated potential for quantification of in vivo metabolites from long echo time spectroscopic imaging.  相似文献   

10.
It is known that ultrasound techniques yield nonintrusive measurements of hydrodynamic flows. For example, the study of the echoes produced by a large number of particles insonified by pulsed wavetrains has led to a now-standard velocimetry device. In this paper, a new technique for the measurement of the velocity of individual solid particles moving in fluid flows is proposed. It relies on the ability to resolve in time the Doppler shift of the sound scattered by the continuously insonified particle. For this signal-processing problem two classes of approaches can be used: time-frequency analysis and parametric high-resolution methods. In the first class the spectrogram and reassigned spectrogram is considered, and applied to detect the motion of a small bead settling in a fluid at rest. In nonstationary flows, methods in the second class are more robust. An approximated maximum likelihood (AML) technique has been adapted, coupled with a generalized Kalman filter. This method allows for the estimation of rapidly varying frequencies; the parametric nature of the algorithm also provides an estimate of the variance of the identified frequency parameters.  相似文献   

11.
The paper deals with a study of the proton nuclear magnetic resonance (NMR) of crystallization water in isomorphous monohydrates MgSO4. 1 H2O and FeSO4. 1 H2O in the temperature range 123–313 K. The NMR second moment for diamagnetic MgSO4. 1 H2O shows only a weak dependence on temperature but the one for paramagnetic FeSO4. 1 H2O is rather strong. Results obtained for FeSO4. 1 H2O are in a good agreement with the Kroon's theory of NMR in paramagnetics. The Curie-Weiss constant and the effective magnetic moment of Fe2+ ions in FeSO4. 1 H2O are derived from the temperature dependence of NMR second moment. The motion of molecules of crystallization water in these hydrates is discussed on the basis of temperature dependences of the width and second moment of NMR spectra.  相似文献   

12.
The small signal high-frequency ac mobility of hot electrons in n-GaN in the extreme quantum limit at low- and high-temperatures has been calculated considering the non-equilibrium phonon distribution as well as the thermal phonon distributions. The energy loss rate has been calculated considering the dominance of the piezo electric coupling scattering and the polar optical phonon scattering while the momentum loss rate has been calculated considering the acoustic phonon scattering via deformation potential and the piezo electric coupling and the dislocation scattering.  相似文献   

13.
14.
1H and 13C NMR chemical shift assignments were obtained for the local anesthetics etidocaine (1) and etidocaine hydrochloride (2) in CDCl3 solution, as well as for 2 in D2O solution. The COSY experiment was employed for proton-proton correlation, while onebond and long-range 2D heteronuclear techniques allowed the assignments of all 13C chemical shifts in each molecule. Etidocaine has a chiral carbon; etidocaine hydrochloride has, in addition to the natural chiral center, an acid-induced chirality at the protonated amine nitrogen, resulting in solvent-dependent diastereomers. Ten of the fourteen magnetically nonequivalent 13C nuclei of 2 exhibit doubled 13C resonance peaks (50.3 MHz, 20°C, CDCl3 solution) due to the presence of the two diastereomers.  相似文献   

15.
The pulsed NMR method is applied to an analysis of a complicated structure of inhomogeneous internal fields in a ferromagnetic crystal. Proton magnetic resonance in the Ising ferromagnet TbES at a temperature range from 1.6 K down to 35 mK is studied at frequencies of 10–35 MHz. A complicated picture of static and fluctuating internal magnetic fields in the crystal is presented. Interatomic distances are shown to have an uncertainty of the order of 0.2% due to defects in the crystal lattice. The fluctuations of internal magnetic fields produced by thermal excitation and spin-spin relaxation of Tb3+ ions give rise to the effective nuclear magnetic relaxation: 1/T1(2)~exp (δ/kT), where δ is the energy splitting of the lowest Tb3+ quasi-doublet. The rate of these fluctuations in TbES at low temperatures is approximately equal to 2×107 s?1 being independent of temperature and magnetic field.  相似文献   

16.
The effect of proton exchange on the measurement of 1H-1H, 1H-2H, and 2H-2H residual dipolar interactions in water molecules in bovine Achilles tendons was investigated using double-quantum-filtered (DQF) NMR and new pulse sequences based on heteronuclear and homonuclear multiple-quantum filtering (MQF). Derivation of theoretical expressions for these techniques allowed evaluation of the 1H-1H and 1H-2H residual dipolar interactions and the proton exchange rate at a temperature of 24 degrees C and above, where no dipolar splitting is evident. The values obtained for these parameters at 24 degrees C were 300 and 50 Hz and 3000 s-1, respectively. The results for the residual dipolar interactions were verified by repeating the above measurements at a temperature of 1.5 degrees C, where the spectra of the H2O molecules were well resolved, so that the 1H-1H dipolar interaction could be determined directly from the observed splitting. Analysis of the MQF experiments at 1.5 degrees C, where the proton exchange was in the intermediate regime for the 1H-2H dipolar interaction, confirmed the result obtained at 24 degrees C for this interaction. A strong dependence of the intensities of the MQF signals on the proton exchange rate, in the intermediate and the fast exchange regimes, was observed and theoretically interpreted. This leads to the conclusion that the MQF techniques are mostly useful for tissues where the residual dipolar interaction is not significantly smaller than the proton exchange rate. Dependence of the relaxation times and signal intensities of the MQF experiments on the orientation of the tendon with respect to the magnetic field was observed and analyzed. One of the results of the theoretical analysis is that, in the fast exchange regime, the signal decay rates in the MQF experiments as well as in the spin echo or CPMG pulse sequences (T2) depend on the orientation as the square of the second-rank Legendre polynomial.  相似文献   

17.
The hydration properties of the oxidized form of horse heart cytochrome c have been studied by (1)H NMR spectroscopy. Two-dimensional, homonuclear ePHOGSY-NOESY experiments are used to map water-protein interactions. The detected NOEs reveal interactions between nonexchangeable protein protons and both water protons and labile protein protons which exchange with water protons. Among the many water molecules apparent in the X-ray structure, three have been identified with a residence time longer than 300 ps. One of them is located inside the distal heme cavity, in the deepest part of a hydration pathway extending toward the surface. The identification of hydrophilic regions and detection of three long-lived water molecules settles some ambiguities and provides a better representation of the water-protein interactions in oxidized cytochrome c.  相似文献   

18.
The evolution with the temperature of the relative Fe1+ transient state population in ZnS is analyzed with the coherent relaxation model. The evolution of the Fe1+ life time is compatible with an activation energy of 0.24 eV. The quadrupolar coupling observed at low temperature may be due to the population out of thermal equilibrium of an electronic excited state of Fe1+. These results are in agreement with optical measurements on impurities in semiconductors.  相似文献   

19.
Water 2H NMR signal on the surface of nano-silica material MCM-41 consists of two overlapping resonances. The 2H water spectrum shows a superposition of a Lorentzian line shape and the familiar NMR powder pattern line shape, indicating the existence of two spin components. Exchange occurs between these two groups. Decomposition of the two signals is a crucial starting point to study the exchange process. In this article we have determined these spin component populations along with other important parameters for the 2H water NMR signal over a temperature range between 223 K and 343 K.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号