首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we focus on the robust exponential stability of a class of uncertain nonlinear impulsive switched systems with switching delays. We introduce a novel type of piecewise Lyapunov-Razumikhin functions. Such functions can efficiently eliminate the impulsive and switching jump of adjacent Lyapunov functions at impulsive switching instants. By Razumikhin technique, the delay-independent criteria of exponential stability are established on the minimum dwell time. Finally, an illustrative numerical example is presented to show the effectiveness of the obtained theoretical results.  相似文献   

2.
This paper investigates the exponential stability problem for a class of singularly perturbed impulsive systems in which the flow dynamics is unstable and is affected at discrete time instants by impulses that have both destabilizing and stabilizing effects. More precisely the impulses have stabilizing effects on the slow variables but destabilizing effects on the fast ones. Thus, a first contribution of our work is related to stability analysis of singularly perturbed impulsive systems in the case when neither the flow dynamics nor the impulsive one is stable. In order to take full advantage of the jump matrix structure and its stabilizing effects on the slow dynamics, we introduce a new impulse-dependent vector Lyapunov function. This function allows us to better describe the behavior between two consecutive impulses as well as the jumps at impulse instants. Several numerically tractable criteria for stability of singularly perturbed impulsive systems are established based on vector comparison principle. Additionally, upper bounds on the singular perturbation parameter are derived. Finally, the validity of our results is verified by two numerical examples.  相似文献   

3.
This paper surveys the recent theoretical results on the stabilization of switched nonlinear systems with unstable modes. Two cases are considered. (1) Some modes are stable, and others may be unstable. The stabilization can be achieved via the trade-off among stable modes and unstable ones. (2) All modes may be unstable. The stabilization can also be achieved via the trade-off among the potentially stable parts of all modes, or with the help of the jump dynamics at switching instants. The practical usefulness is illustrated by several applications including supervisory control, fault tolerant control, multi-agent systems, and networked control systems. Some perspectives are also provided.  相似文献   

4.
This paper investigates the problem of robust reliable control for a class of uncertain switched neutral systems under asynchronous switching, where the switching instants of the controller experience delays with respect to those of the system and the parameter uncertainties are assumed to be norm-bounded. A state feedback controller is proposed to guarantee exponential stability and reliability for switched neutral systems, and the dwell time approach is utilized for the stability analysis and controller design. A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

5.
In this paper, the stability of complex-valued impulsive and switching system is addressed. By using switched Lyapunov functions on a complex field, some new stability criteria of complex-valued impulsive and switching systems are established, which not only generalize some known results in the literature, but also greatly reduce the complexity of analysis and computation. As an application, a new hybrid impulsive and switching feedback controller for the complex-valued chaotic Lü system is designed.  相似文献   

6.
Abstract

This article is intended to study global asymptotical stability in probability for random impulsive coupled systems on networks with Markovian switching. Two cases are considered. (1) Continuous dynamics are stable while impulses are unstable; (2) impulses are stable while continuous dynamics are unstable. To begin with, based on Lyapunov method as well as graph-theoretic technique, several new stability criteria in two cases are derived, that are, the Lyapunov-type criteria and the coefficients-type criteria. Then main results are used for a class of random impulsive coupled oscillators. Finally, the effectiveness of the obtained results is verified by numerical simulations.  相似文献   

7.
This paper considers the asymptotic synchronization problem for a class of uncertain complex networks (CNs) with hybrid switching and impulsive effects. The switches and impulses occur by following a time sequence which is characterized by dwell-time constraint. By designing Lyapunov function with time-varying matrix parameter, two general synchronization criteria formulated by matrix inequalities are first given, which unify synchronizing and desynchronizing impulses. Then specific conditions in terms of linear matrix inequalities (LMIs) are given by partitioning the dwell time and using convex combination technique. Compared with those criteria which are only applicable to pure synchronizing impulses or pure desynchronizing impulses, our results are more practical. It is shown that the switched impulsive CNs (SICNs) can be synchronized by desynchronizing impulses even though CNs without impulse are unsynchronized. Numerical examples are given to show the effectiveness of our new results.  相似文献   

8.
This paper is concerned with the problem of robust reliable control for a class of uncertain stochastic switched nonlinear systems under asynchronous switching, where the switching instants of the controller experience delays with respect to those of the system. A design scheme for the reliable controller is proposed to guarantee almost surely exponential stability for stochastic switched systems with actuator failures, and the dwell time approach is utilized for the stability analysis. Then the approach is extended to take into account stochastic switched system with Lipschitz nonlinearities and structured uncertainties. Finally, a numerical example is employed to verify the proposed method.  相似文献   

9.
This paper investigates the problem of robust reliable control for a class of switched nonlinear systems with time delay and actuator failures under asynchronous switching. When the switching instants of the controller experience delays with respect to those of the system, a kind of reliable controller design method is proposed, and the dwell time approach is utilized for the stability analysis. Sufficient conditions for the existence of the reliable controller are formulated in terms of a set of LMIs. Then the proposed approach is extended to take into account switched delay systems with Lipschitz nonlinearities and structured uncertainties. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

10.
This paper develops the concepts of strict practical stability of ordinary differential equations to impulsive differential system. Strict practical stability, known as stability in tube-like domain, can be made to estimate upper bound and lower bound of the solutions of impulsive differential equations. This note provides several stability criteria for strict practical stability of nonlinear dynamical systems with impulse effects by employing two Lyapunov-like functions under general restrictions. It may provide a greater prospect to solve problems which exhibit impulsive effects.  相似文献   

11.
The global optimal control problem is proposed for a special class of hybrid dynamical systems, i.e. impulsive switching systems. Then the necessary condition of the above problem, the minimum principle, is given. Ekeland’s variational principle and the matrix cost functional structure expression are utilized in the process of the proof. Based on the main result, a special linear hybrid impulsive and switching system (HISS) is illustrated and the optimal control algorithm is presented. Moreover, the cases of pure impulsive systems and pure switched systems are included in this paper.  相似文献   

12.
Many real systems involve not only parameter changes but also sudden variations in environmental conditions, which often causes unpredictable topologies switching. This paper investigates the impulsive consensus problem of the one-sided Lipschitz nonlinear multi-agent systems (MASs) with Semi-Markov switching topologies. Different from the existing modeling methods of the Markov chain, the Semi-Markov chain is adopted to describe this kind of randomly occurring changes reasonably. To cope with the communication and control cost constraints in the multi-agent systems, the distributed impulsive control method is applied to address the leader–follower consensus problem. Beyond that, to obtain a wider nonlinear application range, the one-sided condition is delicately developed to the controller design, and the results are different from the ones obtained in the traditional method with the Lipschitz condition (note that the existing results are usually only applicable to the case with small Lipschitz constant). Based on the characteristics of cumulative distribution functions, the theory of Lyapunov-like function and impulsive differential equation, the asymptotically mean square consensus of multi-agent systems is maintained with the proposed impulsive control protocol. Finally, an explanatory simulation is presented to validate the correctness of the proposed approach conclusively.  相似文献   

13.
This paper considers input-to-state stability (ISS) characterization for a class of impulsive systems which jump map depends on time. We provide sufficient conditions in terms of exponential ISS-Lyapunov functions equipped with an appropriate dwell-time condition for establishing ISS property. Some modifications of dwell times which are more conservative, but easy to be verified are being introduced. We also show that impulsive system with multiple jump maps can naturally represent an interconnection of several impulsive systems with different impulse time sequences. Then we present a procedure to verify ISS of such networks.  相似文献   

14.
We study the stability properties of a closed-loop system composed of a dynamical plant and a feedback controller, the latter generating control signals that can be compromised by a malicious attacker. We consider two classes of feedback controllers: a static output-feedback controller, and a dynamical gradient-flow controller that seeks to steer the output of the plant towards the solution of a convex optimization problem. In both cases, we analyze the stability properties of the closed-loop system under a class of switching attacks that persistently modify the control inputs generated by the controllers. Our stability analysis leverages the framework of hybrid dynamical systems, Lyapunov-based arguments for switching systems with unstable modes, and singular perturbation theory. Our results reveal that, under a suitable time-scale separation between plant and controllers, the stability of the interconnected system can be preserved when the attack occurs with “sufficiently low frequency” in any bounded time interval. We present simulation results in a power-grid example that corroborate the technical findings.  相似文献   

15.
In this paper, the globally exponential synchronization of delayed complex dynamical networks with impulsive and stochastic perturbations is studied. The concept named “average impulsive interval” with “elasticity number” of impulsive sequence is introduced to get a less conservative synchronization criterion. By comparing with existing results, in which maximum or minimum of impulsive intervals are used to derive the synchronization criterion, the proposed synchronization criterion increases (or decreases) the impulse distances, which leads to the reduction of the control cost (or enhance the robustness of anti-interference) as the most important characteristic of impulsive synchronization techniques. It is discovered in our criterion that “elasticity number” has influence on synchronization of delayed complex dynamical networks but has no influence on that of non-delayed complex dynamical networks. Numerical simulations including a small-world network coupled with delayed Chua’s circuit are given to show the effectiveness and less conservativeness of the theoretical results.  相似文献   

16.
Switching between the system and the associated observer or controller is in fact asynchronous in switched control systems. However, many times we assume it synchronous, for simplicity. In this paper, the robust observer design problems for a class of nonlinear uncertain switched systems for synchronous and asynchronous switching are addressed. At first, a robust observer under synchronous switching is proposed based on average dwell time approach. After that, the results are extended to robust observer design in the asynchronous case. In this case, two working modes are adopted to facilitate the studies on the issue. Finally, an extension case covering more practical applications is investigated under asynchronous switching. The designed observer cannot maintain the asymptotical stability of error state, but the eventual boundness is guaranteed. At the end, a numerical design example is given to illustrate our results.  相似文献   

17.
We obtain necessary conditions of optimality for impulsive Volterra integral equations with switching and impulsive controls, with variable impulse time-instants. The present work continues and complements our previous work on impulsive Volterra control with fixed impulse times.  相似文献   

18.
This paper deals with the problem of finite-time stability and stabilization of nonlinear Markovian switching stochastic systems which exist impulses at the switching instants. Using multiple Lyapunov function theory, a sufficient condition is established for finite-time stability of the underlying systems. Furthermore, based on the state partition of continuous parts of systems, a feedback controller is designed such that the corresponding impulsive stochastic closed-loop systems are finite-time stochastically stable. A numerical example is presented to illustrate the effectiveness of the proposed method.  相似文献   

19.
This article deals with stability of discrete-time switched systems. Given a family of nonlinear systems and the admissible switches among the systems in the family, we first propose a class of switching signals under which the resulting switched system is globally asymptotically stable. We allow unstable systems in the family and our stability condition depends solely on asymptotic behaviour of the switching signals. We then discuss algorithmic construction of the above class of switching signals, and show that in the presence of exogenous inputs and outputs, a switching signal so constructed also ensures input/output-to-state stability for discrete-time switched nonlinear systems. We finally show that our class of switching signals that ensures global asymptotic stability also extends to the continuous-time setting with minor modifications under standard assumptions. We employ multiple Lyapunov-like functions and graph theoretic tools as the main apparatuses for our analysis.  相似文献   

20.
The robust exponential stabilization for a class of the uncertain switched neutral nonlinear systems with time-varying delays based on the sampled-data control is investigated in this paper. The closed-loop system with sampled-data control is modeled as a continuous time system with a time-varying piecewise continuous control input delay. Considering the relationship between the sampling period and the dwell time of two switching instants, sampling interval with no switching and sampling interval with one switching are discussed, respectively. By Wirtinger-based inequality, Wirtinger-based double integral inequality, and free-weighting matrix technique, some delay-dependent sufficient conditions are given to guarantee the exponential stability of uncertain switched neutral nonlinear systems under asynchronous switching. In addition, sampled-data controllers can also be designed by special operations of matrices. Finally, two numerical examples are used to show the effectiveness of the approach proposed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号