首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Structure-related adsorption characteristics of ordered mesoporous silicas with spherical particles were studied depending on the conditions of their synthesis, including pH of the medium, the type of the alcohol, and the concentrations of the initial components of micelle solutions. The special features of the template synthesis of mesoporous silica in large silica gel pores were studied. The synthesized silicas were characterized by low-temperature nitrogen sorption-desorption, X-ray diffraction, and scanning electron microscopy measurements.  相似文献   

2.
The porous structure of silica samples prepared via sol–gel synthesis with the use of nanocrystalline cellulose particles as a template has been studied by low-temperature nitrogen adsorption. The influence of the concentration of a nanocrystalline cellulose dispersion, template content in the nanocrystalline cellulose/SiO2 composite, and the conditions of the sol–gel synthesis on the porous structure of silica has been investigated.  相似文献   

3.
A novel non-suffactant method was described to synthesize mesoporous silica using dye basic fuchsin as template.Chemical reactions were introduced into the formation of mesopores rather than the weak electrostatic or hydrogen-bonding interactions in the traditional surfactant routes.The reactant composition was found to be crucial to the pore structure of objective product.The formation mechanism of mesopore was also proved.  相似文献   

4.
The suitability of mixed solubilization compositions for template synthesis of mesoporous molecular sieves of various designations was demonstrated by analysis of published data and by the authors experimental results.Translated from Zhurnal Prikladnoi Khimii, Vol. 77, No. 11, 2004, pp. 1787–1794.Original Russian Text Copyright © 2004 by Yaroshenko, Ilin.  相似文献   

5.
Mesoporous pure silicas and functionalized silica with a narrow pore size distribution centered at 3.8 nm were prepared by a novel template, amphiphilic dendritic polyglycerol. The resulting silica materials were characterized by electron microscopy; nitrogen adsorption; (1)H, (13)C, and (29)Si solid-state cross-polarization magic-angle spinning NMR spectroscopy. It was shown that the template could be completely removed from the pure and functionalized silica in an environmentally friendly way by means of a simple water extraction procedure. Furthermore, it was shown that these materials could be easily functionalized, for example, by employing aminopropyl groups. Thus, a new environmentally friendly pathway to this fascinating class of silica material has been opened.  相似文献   

6.
A synthetic method has been developed that can control both multifunctionalization and morphology of the mesoporous organic-inorganic hybrid materials by introducing different molar ratios of organoalkoxysilane precursors to a base-catalyzed co-condensation of silicate.  相似文献   

7.
8.
9.
Journal of Thermal Analysis and Calorimetry - Aminosilane-modified MCM-41 and SBA-15 mesoporous silicas were synthesized using sodium silicate extracted from gold mine tailings slurry in this...  相似文献   

10.
FSM-16, a mesoporous silica, was found to catalyze oxidative photo-decarboxylation of alpha-hydroxy carboxylic acid, phenyl acetic acid derivatives and N-acyl-protected alpha-amino acids to afford the corresponding carbonyl compounds. Furthermore, FSM-16 proved to be re-usable by re-calcination at 450 degrees C after the reaction.  相似文献   

11.
This review focuses on recent developments in the preparation, properties and catalytic applications of chemically modified mesoporous silicas. Over the last few years, this group of materials has been the subject of intense activity in the materials community, and many applications have been found for these fascinating materials. This non-exhaustive review aims to highlight the key features of the materials, which are relevant and important to catalysis, and illustrates their utility with a series of recent examples.  相似文献   

12.
Zeolite Beta Aggregates have been synthesized by the self-assembly of Beta nanoparticles without the use of second template or additive, where the large zeolitic aggregates avoided the filtration difficulties and the presence of mesopore reduced the diffusion limitation. The samples were characterized by XRD, N2-sorption, SEM, TEM, thermogravimetric analysis, IR spectroscopy and temperature programmed desorption of ammonia. The results showed that the SiO2/Al2O3 ratio played a key role on the particle size, mesopore volume and particle–particle aggregation process of zeolite Beta. The sample with SiO2/Al2O3 ratio below 60 had improved textual and acidic properties and exhibited the best catalytic activity to the alkylation of phenol with tert-butanol.  相似文献   

13.
Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups on the surface of particles and inside their pores were obtained by means of sol-gel synthesis with postsynthetic vapor-phase treatment in vacuum. It was found that the synthesized materials have the hexagonally ordered porous structure typical of MCM-41 type silica.  相似文献   

14.
The present review is not exhaustive and rather endeavors to illustrate ways to improve the wall stability of ordered mesostructured silicas in presence of water. In situ X-ray diffraction of the phase transformations of hybrid (surfactant containing) silicas show how synthesis temperature, pH and duration control wall chemistry (thickness, condensation and hydrolysis). Ex situ studies of calcined (surfactant free, empty mesopores) silicas show how wall stability (in boiling water, under steam) is affected by synthesis conditions and/or post-synthesis treatments.  相似文献   

15.
A series of achiral cationic and anionic amphiphiles employed as templates for mesoporous silica, all showed an excellent ability to form highly ordered helical mesoporous silica (HMS) crystals. It was supposed that the helical mesostructure may originate from the helical propeller-like micelle formed by the achiral amphiphilic molecules due to their instantaneous asymmetric shape survived in the micelle. The existence of the mirror-imaged conformations of equal proportion may result in the racemic nature of the achiral amphiphile-templated HMSs. The helicity of the HMS greatly depends on the templating molecules which may be modulated by the twisting power of the helical propeller-like packing of the amphiphiles in the micelle. The dependence of the pitch length on different factors was explained by mechanical analysis indicating that the pitch length should be in direct proportion to the rod diameter but inversely proportional to the moment of micelle (M0). Additionally, chiral amphiphiles with opposite charge were used as chiral dopants to control the enantiopurity of the achiral amphiphile-templated HMSs. The absolute enantiomeric excess (ee) of the HMSs increased with increasing amounts of dopant.  相似文献   

16.
17.
The highly ordered mesoporous silicas with elaborately controlled microenvironment were synthesized via covalent incorporation of long-chain polymers (M(w) = 2000 g mol(-1)) bearing specific hydrophilic/hydrophobic balance. The microenvironment (hydrophilicity/hydrophobicity) of the mesoporous silicas was quantitatively determined by gas adsorption experiments and investigated by lysozyme (LYZ) adsorption. The relative activity of lipase from Pseudomonas cepacia (PCL) encapsulated in the mesoporous silica with moderate hydrophobic microenvironment (hereafter denoted as MHM) reaches up to 281% compared with the free PCL, notably higher than that of PCL accommodated in the mesoporous silicas with hydrophilic or strong hydrophobic microenvironment (20.7-26.2% relative to the free PCL). Moreover, PCL entrapped in the nanochannels with MHM affords the highest initial rate in the kinetic resolution of (R,S)-1-phenylethanol relative to other immobilized PCL. The above results suggest that the MHM could render the active center of PCL entirely exposed to the substrates without interrupting its native conformation in the "interfacial activation". In addition, the nanochannels with MHM could markedly improve the thermal stability of PCL (preserving nearly 60% of the initial activity after the incubation at 70 °C for 2 h) and facilitate the recycling of the immobilized PCL in both aqueous and organic media. Our work demonstrates that the subtle modulation of the microenvironment of mesoporous silicas for enzyme immobilization designates a very promising strategy to fabricate the highly active and stable heterogeneous biocatalysts for industrial application.  相似文献   

18.
The adsorption of a cationic porphyrin, tetrakis-(N-methyl-4-pyridiniumyl)porphine, into mesoporous silicas from solution of tetrakis-(N-methyl-4-pyridiniumyl)porphine p-toluene sulfonate was investigated. Irrespective of the pore size (2.4, 3.5 and 4.2 nm), the cationic porphyrin was adsorbed effectively onto mesoporous silicas to give brown-colored powders. Depending on the amounts adsorbed, which correlate with the average intermolecular distance, the porphines tend to aggregate (dimer).  相似文献   

19.
This work describes the development of highly efficient human DNA separation with functionalized mesoporous silica (FMS) materials. To demonstrate the electrostatic interaction effect between the target DNA molecules and FMS, three aminofunctionality types comprised of a mono-, a di-, and a tri-amine functional group were introduced on the inner surfaces of mesoporous silica particles. Systematic characterization of the synthesized materials was achieved by solid-state 29Si and 13C-NMR techniques, BET, FT-IR, and XPS. The DNA separation efficiency was explored via the function of the amino-group number, the amount used, and the added NaCl concentration. The DNA adsorption yields were high in terms of the use of triaminofunctionalized FMS at the 10 ng/L level, and the DNA desorption efficiency showed the optimum level at over 3.0 M NaCl concentration. The use of FMS in a DNA separation process provides numerous advantages over the conventional silica-based process.  相似文献   

20.
The dual template synthesis of zeolite SSZ-13 by use of trimethyl-adamantanammonium hydroxide and a diquaternary-ammonium mesoporogen induces considerable mesoporosity without impeding zeolite microporosity. The strongly improved accessibility of Br?nsted sites in mesoporous SSZ-13 increases its stability during application as an acid catalyst in the methanol-to-olefins reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号