首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thiosemicarbazone derivatives are formed on reaction between acetophenone, salicylaldehyde, benzophenone and/or 2-hydroxy-4-methoxybenzophenone and thiosemicarbazide or its N4H substituents (ethyl-, phenyl-, and p-chlorophenyl-). The ligands were investigated by elemental analysis and spectral (IR, 1H?NMR and MS) studies. The formulas of the prepared complexes have been suggested by elemental analyses and confirmed by mass spectra. The coordination sites of each ligand were elucidated using IR spectra revealing bidentate and tridentate coordination. Different geometries for the complexes were proposed on the basis of electronic spectra and magnetic measurements. The complexes have been analyzed thermally (TG and DTG) and the kinetic parameters for some of their degradation steps were calculated.  相似文献   

2.
1-S-Methylcarbodithioate-4-substituted thiosemicarbazides (L1-L3) have been prepared and confirmed by spectral data and elemental analysis. Co(II), Ni(II), Cu(II), Cd(II) and Zn(II) complexes with L1-L3 have been prepared and characterized by elemental and thermal analyses, molar conductance, magnetic moment, as well as spectral data (IR, 1H NMR, mass and electronic spectra). The molar conductance data reveal that the chelates are non-electrolytes. The IR and 1H NMR spectra showed that L1-L3 are deprotonated in the complexes and act as binegative SNNS donors. The electronic spectra of the complexes as well as their magnetic moments provide information about geometries. Thermogravimetric analysis of some complexes suggests different decomposition steps and ending with metal sulfide as final product. The redox properties of the complexes are explored by cyclic voltammetry.  相似文献   

3.
Two Schiff bases, 1-acetylferrocene thiosemicarbazone (HL1) and 1,1′-diacetyl-ferrocene dithiosemicarbazone (H2L2) and their copper(II) complexes were prepared and characterized by elemental analysis, magnetic susceptibility, conductivity, and spectral (IR, UV–Vis, ESR) measurements The IR spectra showed that HL1 acts as neutral or monobasic bidentate ligand, coordinating to copper(II) through either thiono- or thiolo-sulphur and azomethine-N atoms, whereas H2L2 is a neutral or dibasic mononucleating or binucleating quadridentate ligand coordinating through the same atoms. Other spectral measurements indicate that complexes [(L1)2Cu], [(L2)Cu] and [(HL1)2Cu]X2, X?=?Cl, Br or ClO4 have square-planar geometry around copper(II) while [(HL1)CuX2] and [(H2L2)Cu2X4], X?=?Cl or Br, have distorted tetrahedral geometry. The biological activity studies of the complexes and the free ligands towards two gram positive and two gram negative bacteria and one fungal species have been studied and the potential is related to the nature and structure of the tested compounds.  相似文献   

4.
The chelation behavior of some =N(1) and NH(4) thiosemicarbazones towards copper(II) ions has been investigated. The isolated complexes are characterized by elemental analysis, magnetic moment, electronic, IR, ESR and ms spectra, and by thermal and voltammetric measurements. The substituents on =N(1) and/or NH(4) thiosemicarbazones and the log K values of the ligands play an important role in complex formation. The IR spectra showed that the reagents HAT, HAET, HAPT, HApClPT, H2ST and HBT are deprotonated in the complexes and act as mononegative SN donors; H2SET, H2SpClPT, H2HyMBPT and H2HyMBpClPT, as binegative NSO donors while H2SPT is a mononegative NSO donor. The ESR spectra of the complexes are quite similar and exhibit axially symmetric g-tensor parameters with g ?>?g ?>?2.0023. The loss of thiol and/or hydroxyl hydrogen was confirmed from potentiometric titrations of the ligands and their copper(II) complexes. The protonation constants of the ligands as well as the stability constants of their Cu(II) complexes were calculated. Thermogravimetric analysis of the complexes suggests different decomposition steps. The Coats–Redfern and Horowitz–Metzger equations have been used to calculate the kinetic and thermodynamic parameters for the different thermal decomposition steps of some complexes. The redox properties, nature of the electroactive species and the stability of the complexes towards oxidation are strongly dependent on the substituents on the precursor NH(4) thiosemicarbazone. The redox data are discussed in terms of the kinetic parameters and the reaction mechanism.  相似文献   

5.
Complexes of Cr(III) and Mn(II) with N′,N″-bis(3-carboxy-1-oxopropanyl) 2-amino-N-arylbenzamidine (H2L1) and N′,N″-bis(3-carboxy-1-oxophenelenyl) 2-amino-N-arylbenzamidine (H2L2) have been synthesized and characterized by various physico-chemical techniques. The vibrational spectral data are in agreement with coordination of amide and carboxylate oxygen of the ligands with the metal ions. The electronic spectra indicate octahedral geometry around the metal ions, supported by magnetic susceptibility measurements. The thermal behavior of chromium(III) complexes shows that uncoordinated nitrate is removed in the first step, followed by two water molecules and then decomposition of the ligand; manganese(II) complexes show two waters removed in the first step, followed by removal of the ligand in subsequent steps. Kinetic and thermodynamic parameters were computed from the thermal data using Coats and Redfern method, which confirm first order kinetics. The thermal stability of metal complexes has been compared. X-ray powder diffraction determines the cell parameters of the complexes.  相似文献   

6.
Two new acylhydrazone copper(II) complexes of 4‐hydroxy‐N′‐[(1E)‐1‐(4‐methylphenyl)ethylidene]benzohydrazide (HL1) and 4 ethyl [4‐({(2E)‐2‐[1‐(4‐methylphenyl)ethylidene]hydrazinyl}carbonyl)phenoxy]acetate (HL2) have been synthesized and characterized. The structures of both acylhydrazone and copper(II) complexes were identified by elemental analysis, infrared spectra, UV–visible electronic absorption spectra, magnetic susceptibility measurements, TGA and powder X‐ray diffraction. DNA binding and DNA cleavage activities of the synthesized copper complexes were examined by using UV‐visible titration and agarose gel electrophoresis, respectively. The effect of complex concentration on the DNA cleavage reactions in the absence and presence of H2O2 was also investigated. The results indicate that all the complexes bind slightly to calf thymus DNA and cleavage pBR322 DNA. The mechanistic studies demonstrate that a hydrogen peroxide‐derived species and singlet oxygen (1O2) are the active oxidative species for DNA cleavage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Cu (II) complexes with the sterically hindered diphenol derivatives 3,5-di(tert-butyl)-1,2-benzenediol (I), 4,6-di(tert-butyl)-1,2,3-benzenetriol (II) and the sulfur-containing 4,6-di(tert-butyl)-3-(2-hydroxyethylsulfanyl)-1,2-benzenediol (III) and 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfanyl]acetic acid (IV) have been synthesized and characterized by elemental analysis, TG/DTA, FT-IR, ESR, XPS, XPD and conductivity measurements. Compounds I–III can coordinate in their singly deprotonated forms and act as bidentate ligands. These compounds yield Cu (II) complexes of the stoichiometry Cu(L)2, which have square planar geometry (g| > g > ge). Unlike them, compound IV behaves as a terdentate ligand, and its complex Cu(LIV)2 has distorted octahedral geometry. According to ESR data, only the Cu(LII)2 complex contains a very small amount of phenoxyl radicals. Antimicrobial activities of these ligands and their respective Cu (II) complexes have been determined with respect to Gram-positive and Gram-negative bacteria, as well as on yeasts. Their phytotoxic properties against Chlorella vulgaris 157 were also examined.  相似文献   

8.
9.
《Thermochimica Acta》2001,370(1-2):29-36
The thermal properties of four copper(II) complexes with N,N′,N″,N-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc) and several bidentate ligands N,S (thiosemicarbazide and thiourea) or N,O donors (semicarbazide and urea), of the general formula [Cu2(X)tpmc](ClO4)4, have been investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC). The thermal stability order can be recognized for the examined complexes, depending on coordinated bidentate bridging N,S or N,O ligand. Kinetic data demonstrated first-order thermal decomposition. A plausible mechanism has been proposed which explains the major products of the degradation.  相似文献   

10.
The mononuclear Cu(II) complex, [Cu(o-Va)2(H2O)2] (o-HVa = o-vanillin, 2-hydroxy-3-methoxybenzaldehyde) has been synthesized and characterized by elemental analyses, FTIR, FT-Raman, and electronic spectroscopies and compared with the results obtained for the free ligand. The optimized geometry, the harmonic vibrational frequencies and the electronic transitions of the complex and the ligand were calculated using methods based on the density functional theory. Antimicrobial activity against Escherichia coli and Staphylococcus aureus and SOD-mimic activities of the complex were studied and compared with the analogous copper complex with vanillin, [Cu(Va)2(H2O)2]. Stability of the compounds in the essayed solution and with time was determined by means of conductimetric measurements. Their redox behavior was studied by cyclic voltammetry and was compared with that observed for the ligands. The complexes undergo two main reductions and one oxidation processes involving the metal center and the coordinated ligand, respectively.  相似文献   

11.
Two new platinum(II) complexes with tris(aminomethyl)phosphanes: [trans-PtCl2{P(CH2N(CH2CH2)2NCH3)3}2] (1Pt) and [trans-PtCl2{P(CH2N(CH2CH2)2O)3}2] (2Pt) were prepared and characterized with NMR and UV-Vis spectroscopies. Their structures were investigated by X-ray crystallography and DFT methods. TDDFT calculations were employed to interpret the electronic spectra of the complexes. Obtained results are not unequivocal, however population analysis indicate, that the character of HOMO and HOMO−1 orbitals depend strongly on the electron donoring properties of the phosphane ligand. Biological activity of 2Pt complex, which is more stable and more soluble in polar solvents than 1Pt, was examined in vitro on the Vero cell line (IC50 = 12.5 μM). At higher concentrations it induces apoptosis, probably due to changes of the cell cytoskeleton. Luminescence quenching studies and CD spectroscopy of interactions of 2Pt with HSA and BSA indicate that these albumins bind the complex slightly - without altering their tertiary structures, however HSA interacts with 2Pt noticeably stronger than BSA. It was also found that 2Pt does not cleave supercoiled pUC18 plasmid.  相似文献   

12.
The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu72-OH2)63-O)6(adenine)6](NO3)2·6H2O (1) and [Cu22-H2O)2(adenine)2(H2O)4](NO3)4·2H2O (2) are reported. The heptanuclear compound is composed of a central octahedral CuO6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn–Teller distorted octahedral coordination characteristic of a d9 center. The study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-cluster interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.  相似文献   

13.
Summary Synthesis, elemental (CHN), spectral (FTIR), thermogravimetry (TG), differential thermal analysis (DTA) and complexometric titration have been applied to the investigation of the thermal behavior and structure of the complexes: Mg(ac)2(mpc)3·3H2O(I), Mg(Clac)2(mpc)2·3H2O(II), Mg(Cl2ac)2(mpc)2·3H2O(III), Mg(Cl3ac)2(mpc)2·3H2O(IV) and [Cu(ac)2(mpc)]2·3H2O(V) (ac=CH3COO-, Clac=ClCH2COO-, Cl2ac=Cl2CHCOO-, Cl3ac=Cl3CCOO- and mpc=methyl-3-pyridyl carbamate). Thermal decomposition of these complexes is a multi-stage processes. The composition of the complexes and the solid state intermediate and resultant products of thermolysis had been identified by means of elemental analysis and complexometric titration. The possible scheme of decomposition of the complexes is suggested. Heating the complexes first resulted in a release of water molecules. The TG results show that the loss of the volatile ligand (mpc) occurs in one step for complexes II, IV and V, and in two steps for complexes I and III. The final solid product of thermal decomposition was MgO or CuO. The thermal stability of the complexes can be ordered in the sequence: I=II<IV<III<V. Mpc was coordinated to Mg(II) or Cu(II) through the nitrogen atom of its heterocyclic ring. IR data suggest to a unidentate coordination of carboxylates to magnesium or copper n complexes I-V. The preliminary studies have shown that the complexes do have antimicrobial activities against bacteria, yeasts and/or fungi. The highest antimicrobial activities were manifested by the complex V.  相似文献   

14.
A series of new hexa-coordinated ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′-hydroxychalcones) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′-hydroxychalcones in benzene under reflux. The new complexes have been characterized by analytical and spectral (IR, electronic, 1H, 31P and 13C NMR) data. Based on the above data, an octahedral structure has been assigned for all the complexes. The new complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide (NMO) as co-oxidant and also found efficient catalyst in the transfer hydrogenation of ketones. The antifungal properties of the complexes have also been examined and compared with standard Bavistin.  相似文献   

15.
Complexes CuL3Cl2, PdL2Cl2 and PtL2Cl2, where L is a novel ligand from the series of 2-substituted 5-aminotetrazoles, namely 5-amino-2-tert-butyltetrazole (1), have been synthesized by the reaction of metal(II) chlorides with 1 and characterized by IR spectroscopy, thermal and X-ray analyses. The crystallographic structural analysis of these complexes revealed that 1 acts as a monodentate ligand coordinated to the metal via endocyclic N4 atom. Platinum complex demonstrates promising cytotoxicity against human cervical carcinoma cells with IC50 value average between those of cisplatin and carboplatin.  相似文献   

16.
A series of 2-aminosubstituted (5Z)-3-phenyl-5-(pyridine-2-ylmethylene)-3,5-dihydro-4H-imidazole-4-ones (L) was prepared by the reaction of the corresponding 2-alkylthio-3,5-dihydro-4H-imidazole-4-ones with morpholine or piperidine in the presence of ytterbium(III) triflate. The resulting ligands were subsequently reacted with CuCl2·2H2O and CoCl2·6H2O to give the corresponding copper(II) and cobalt(II) complexes, respectively. Analysis revealed that the complexes were formed with an LMCl2 (M = Cu, Co)-type composition in all cases. The structures of the three cobalt complexes prepared in this way were determined by X-ray crystallography. The results revealed that the cobalt ions in these complexes were tetrahedrally coordinated to two chloride anions and two nitrogen atoms from the pyridine and imidazole moieties of the ligand. The electrochemical properties of the ligands and their complexes were evaluated by cyclic voltammetry, and the results revealed that the first stage in the reduction of the Co(II) and Cu(II) complexes involved the reversible formation of the corresponding Co(I) and Cu(I) complexes, respectively. The cytotoxicity activities of the organic ligands and their complexes were evaluated against several cancer cell lines, including MCF-7, A549 and HEK293 cells. The copper complexes of the organic ligands bearing a phenyl or allyl moiety at their N(3) position together with a piperidine substituent at the 2-position of their imidazolone ring exhibited the greatest cytotoxicity of all of the compounds tested in the current study.  相似文献   

17.
The reaction between zinc(II) azide, Zn(N3)2 and aminopyrazine (ampyz) afforded the complexes: [Zn(N3)2(ampyz)2] (1), [Zn(N3)2(ampyz)]n (2) and [Zn3(N3)6(ampyz)2]n (3). These complexes are characterized by spectroscopic and crystallographic methods. The IR spectra of these compounds are measured and discussed. The structure of 1 consists of isolated tetrahedral zinc atom surrounded by two mono-dentate N-ampyz and two terminal azido ligands. Complex 2 features a zigzag chain of zinc centers in which each zinc is surrounded by alternate di-EO (end-on) and di-EE (end-to-end) azide bridges, the chain thus contains alternate four-membered Zn2N2 and eight-membered Zn2(NNN)2 rings. The two ampyz ligands are located in cis-arrangement and each of them further binds another zinc atom giving rise to a 3D network. Complex 3 contains two structurally different zinc atoms; the six-coordinate Zn(1) center links two di-EO azido bridges and two trans ampyz, thus having ZnN6 chromophore. The five-coordinate Zn(2) center binds two di-EO bridging azido groups and the fifth position is occupied by an N atom from a bridging ampyz molecule. Both zinc centers, therefore participate in the formation of a 1D chain of cyclic Zn2N2 units. Each ampyz ligand binds another zinc atom via the second pyrazinic N atom giving another cross-chain and thus the structure consists of 2D sheets. In these three complexes the azido ligands of all types are asymmetric and linear within the experimental error.  相似文献   

18.
Four copper(II) coordination polymers, {[Cu(pz(COO)2)(H2O)]4·HBr}n (1), {[Cu(pz(COO)2)(NH3)2]·H2O}n (2), {[Cu3H2(pz(COO)2)4(H2O)3]·2H2O}n (3) and {[Cu2(pz(COO)2)2(NH3)2(H2O)3][Cu(pz(COO)2)(NH3)(H2O)2][Cu(pz(COO)2)(NH3)(H2O)]·2H2O}n (4) were synthesized using pyrazine-2,3-dicarboxylic acid, CuBr2, 2-(2-aminoethylamino)ethanol/triethanol amine/ammonia in a methanol:water (1:1) solution, and the mixed ligand complexes were characterized by spectroscopic methods, thermal and elemental analysis, and magnetic susceptibility. Complexes 2 and 4 were also characterized by means of single crystal X-ray crystallography. The characterizations show that the complexes have polynuclear molecular structures, except for complex 2, and all of the complex structures form polymeric chains. Complex 4 has a pseudo-merohedral twin structure.  相似文献   

19.
Condensation of diacetylmonoxime with 2-amino-5-mercapto-1,3,4-thiadiazole, 2-amino-1,3,4-thiadiazole or 3-amino-5-methylisoxazole in the presence of Co(II) and Cu(II) salts with different anions produced nine complexes. The synthesized complexes have been characterized by elemental analyses, molar conductivities, thermal analyses, magnetic moments, IR, electron spin resonance, and UV-Vis spectral studies. The spectral data show that sulfur, oxygen, and nitrogen participate in chelation with the metal ions. The complexes are tetrahedral, octahedral, or square planar based on the amine used and the nature of anion. Molar conductance measurements of the complexes in DMF indicate non-electrolytes. CS Chem 3-D Ultra Molecular Modeling and Analysis Program has been used for optimization of the molecular structures of some complexes. In vitro cytotoxicities of the complexes were tested against different carcinoma cell lines. Antimicrobial activities of the complexes were screened against Gram-positive (Staphylococcus aureus), Gram negative bacteria (Escherichia coli), and fungal species (Aspergillus flavus, Candida albicans, and Microsporum canis).  相似文献   

20.
The chelating behavior of some hydrazones towards Cu(II) has been investigated. The isolated complexes were characterized by elemental analysis, magnetic moment, spectra (electronic, IR and ms) and thermal measurements. The IR spectra showed that the ligands are deprotonated in the complexes as bidentate, tridentate and binegative tridentate. Protonation constants of the ligands and the stability constants of their Cu(II) complexes were calculated. Square-planar, square-pyramidal, tetrahedral and/or distorted octahedral structures are proposed. The TGA data help to confirm the chemical formula of the complexes and indicated the steps of their thermal degradations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号