首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The fractal dimensions of six differently mechanically pre-treated stainless steel samples were investigated using five fractal algorithms. The surfaces were analyzed using a profiler, atomic force microscopy (AFM), scanning electron microscopy (SEM) and light microscopy (LM), and thereafter adhesively bonded and tested in single-overlap joints to test their tensile strength. All samples showed different fractal behavior, depending on the microscopic methods and fractal algorithms. However, the overall relation between fractal dimension and tensile strength is qualitatively the same, except for the SEM images. This verifies that tensile strength is correlated to fractal dimension, although only within the length-scale of the profiler and the light microscope (≈0.5–100 μm). The AFM method was excluded in this comparison, since the limitation in the z-direction for the AFM scanner made it difficult to scan the rougher parts of the blasted samples. The magnitude of the surfaces is a parameter not often considered in fractal analysis. It is shown that the magnitude, for the Fourier method, is correlated to the arithmetic average difference, Ra, but only weakly to the fractal dimension. Hence, traditional parameters, such as Ra, tell us very little about the spatial distribution of the elevation data. Received: 22 December 1999 / Accepted: 9 October 2000 / Published online: 9 February 2001  相似文献   

3.
4.
The boundary of a fractal object, represented in a two-dimensional space, is theoretically a line with an infinitely small width. In digital images this boundary or contour is limited to the pixel resolution of the image and the width of the line commonly depends on the edge detection algorithm used. The Minkowski dimension was evaluated by using three different edge detection algorithms (Sobel, Roberts, and Laplace operator). These three operators were investigated because they are very widely used and because their edge detection result is very distinct concerning the line width. Very common fractals (Sierpinski carpet and Koch islands) were investigated as well as the binary images from a cancer invasion assay taken with a confocal laser scanning microscope. The fractal dimension is directly proportional to the width of the contour line and the fact, that in practice very often the investigated objects are fractals only within a limited resolution range is considered too.  相似文献   

5.
Atomic force microscopy in contact, non-contact and in high resolution modes have been used to image MgO powder samples, obtained at different degree of sintering, starting from Mg(OH)2 decomposition or obtained in form of smoke. From high resolution AFM images of MgO smoke, the lattice periodicity on regular surfaces has been revealed for the first time, under ambient conditions. The high surface perfection of the microcrystals has been further confirmed by HRTEM analysis. To obtain more information on the local structure of the single faces, in terms of type and distribution of the surface active sites, the adsorption of a simple probe molecule (CO) on such surfaces has been investigated by means of FTIR spectroscopy.  相似文献   

6.
Infrared reflectography, i.e. the use of images taken with infrared light, is currently applied in the field of cultural heritage mainly for paintings analysis to reveal the presence of underdrawings or alterations. Its use in archaeology for deciphering faded signs (texts, images, tattoos, etc.) is a lot more limited and in most cases no or simple data analysis and elaboration is performed. Here we show that infrared reflectography taken by using a wide spectral response (wavelength range from 400 to 2200 nm) VIDICON image acquisition system together with adequate post-elaboration, taking advantage from advanced techniques for data analysis (wavelet decomposition) and image registration and fusion, is able to produce high-quality ‘C&IR’ images. Such images can be obtained in a relatively easy way using the same hardware configuration generally used for infrared reflectographic analysis of paintings. The application to a medieval capsella (a small wooden relics container) from Cimitile, Italy, has shown that these results are of great interest for archaeologists.  相似文献   

7.
Choi Y  Kim M  Yoon C  Yang TD  Lee KJ  Choi W 《Optics letters》2011,36(21):4263-4265
We report on synthetic aperture microscopy through a highly turbid medium. We first recorded a transmission matrix for the turbid medium with an angular basis of 20,000 complex images covering 0.6 NA. This effectively converts the medium into a lens of the same NA. Distorted images of a target object are then taken at 500 different angles of illumination covering 0.6 NA. For each of the distorted images, the original object image is reconstructed from the transmission matrix by the recently developed turbid lens imaging (TLI) technique. All 500 reconstructed images are synthesized to enhance the NA to 1.2 and thereby generate an object image with twice the enhanced spatial resolution of the individual images. Our method of applying aperture synthesis for TLI makes it possible to enhance the resolving power without increasing the number of transmission matrix elements. This relieves the demand for data acquisition and processing that has impeded the practicality of TLI.  相似文献   

8.
Microscopy techniques are suitable to obtain structural information of colloidal clusters with high resolution, but yield only a two dimensional projection of the objects. When imaging finite size objects with fractal properties, such as clusters of colloidal particles, this projection process has to be taken into account for the calculation of the fractal dimension. In this paper we present a technique to calculate the fractal dimension of finite size clusters with fractal properties using grayscale projections such as images obtained by X-ray microscopy. The grayscales are interpreted as different occupation counts within a projection. It is shown, that the radial distribution of these occupation counts varies with the fractal dimension d of the cluster. Using the radius of maximum occupation probability the fractal dimension up to 2.2 of finite size clusters can be calculated. The theoretical predictions are verified by test calculations employing numerically generated clusters.  相似文献   

9.
Effect of detector noise in incoherent hybrid imaging systems   总被引:1,自引:0,他引:1  
Sherif SS  Dowski ER  Cathey WT 《Optics letters》2005,30(19):2566-2568
Hybrid imaging systems involve the joint design of an optical image-gathering module and digital processing algorithms to obtain a required final image. They have the potential to achieve imaging performance hitherto unobtainable by conventional imaging techniques. A reduction in the signal-to-noise ratio of the final image is one of their main disadvantages when one is considering linear signal processing. We analyze the effect of additive white noise at the detector on the performance of hybrid imaging systems under quasi-monochromatic incoherent illumination. We also show numerical results and computer-simulated images for an extended depth-of-field hybrid system.  相似文献   

10.
We report on the fractal analysis of digital speckle patterns experimentally generated using an optical setup to record the light scattered from metallic rough surfaces in the normal direction. Using the differential box counting technique, we have calculated the fractal dimension of digital speckle patterns for six samples with different roughness. Our results show a quadratic dependence between the surface roughness and the fractal dimension of the corresponding digital speckle pattern. As an application a method to determine the surface roughness of metallic surfaces is proposed.  相似文献   

11.
In recent years, increasing attention has been devoted to X‐ray phase contrast imaging, since it can provide high‐contrast images by using phase variations. Among the different existing techniques, Zernike phase contrast microscopy is one of the most popular phase‐sensitive techniques for investigating the fine structure of the sample at high spatial resolution. In X‐ray Zernike phase contrast microscopy, the image contrast is indeed a mixture of absorption and phase contrast. Therefore, this technique just provides qualitative information on the object, which makes the interpretation of the image difficult. In this contribution, an approach is proposed for quantitative phase retrieval in X‐ray Zernike phase contrast microscopy. By shifting the phase of the direct light by π/2 and 3π/2, two images of the same object are measured successively. The phase information of the object can then be quantitatively retrieved by a proper combination of the measured images. Numerical experiments were carried out and the results confirmed the feasibility of the proposed method. It is expected that the proposed method will find widespread applications in biology, materials science and so on.  相似文献   

12.
姚敏 《应用光学》2016,37(1):91-95
针对视频内窥镜的测量需求,提出了一种基于线结构激光照射的测量技术。采用线激光作为定标光照射物体表面,建立了线结构光成像模型,标定了不同物距时的放大率和图像中线位置间的比例系数。通过构建测量平台计算了物体的几何参数,实验结果表明测量误差在10%以内,能够满足视频内窥镜观测和测量要求。  相似文献   

13.
14.
反射光偏振特性分析与物体形状的测量   总被引:2,自引:0,他引:2  
杨进华  邸旭  岳春敏  李志宏  顾国璋 《光学学报》2008,28(11):2115-2119
基于反射光偏振特性,提出了利用图像处理技术测量透明物体三维形状的理论和方法.分析了物体表面反射光的偏振特性,表明自然光在经透明物体表面反射后,反射率随光的振动方向不同而不同,即反射光表现出部分偏振光的特性.研究了强度反射率与入射角以及光强与偏振片方向之间的函数关系,得到了光强大小与入射面方向的关系;根据偏振度概念并结合菲涅耳公式和折射定律,建立了偏振度和入射角之间的表达式,可求得物体表面法线方向,进而得到透明物体的形状.研制了光学实验平台,获得了物体反射光的偏振图像,经过图像处理,获得了被测物体的三维形状.实验结果表明,这种方法对透明物体形状测量是有效和实用的.  相似文献   

15.
We have developed a superresolution vibrational imaging method by simultaneous detection of Raman and hyper-Raman scattering. Raman and hyper-Raman images obtained with the same laser spot carry independent information on the sample spatial distribution, owing to different signal dependence (linear in Raman and quadratic in hyper-Raman) on the incident light intensity. This information can be quantitatively analyzed to recover the incident light intensity distribution at the focal plane. A superresolution vibrational image is then derived by the constrained deconvolution of the images by the obtained incident light intensity distribution. This method has been applied to a TiO? nanostructure and the obtained superresolution image was compared with a scanning electron microscopy image. The spatial resolution achieved by the present method is evaluated to be 160 nm, which is more than twice better than the diffraction limited resolution.  相似文献   

16.
To obtain images through scattering media, scattered light fluorescence (SLF) microscopy that utilizes the optical memory effect has been developed. However, the small field of view (FOV) of SLF microscopy limits its application. In this paper, we have introduced a re-modulation method to achieve wide-field imaging through scattering media by SLF microscopy. In the re-modulation method, to raster scan the focus across the object plane, the incident wavefront is re-modulated via a spatial light modulator (SLM) in the updated phase compensation calculated using the optimized iterative algorithm. Compared with the conventional optical memory effect method, the re-modulation method can greatly increase the FOV of a SLF microscope. With the phase compensation theoretically calculated, the process of updating the phase compensation of a high speed SLM is fast. The re-modulation method does not increase the imaging time. The re-modulation method is, therefore, expected to make SLF microscopy have much wider applications in biology, medicine and physiology.  相似文献   

17.
Speckle fields are the random light wave distributions produced when the light fields are scattered from random surfaces or a random medium. They appear in many optical phenomena that are related to light propagations[1,2] and have found wide appli-cations in a variety of scientific and technical fields. The examples of the recent impor-tant applications of speckles include the analysis of the movement of the granules[3], the three-dimensional imaging for the microstructures of metal nanocryst…  相似文献   

18.
A Mott analyzer of the spin polarization of secondary electrons was installed in a conventional scanning electron microscope (SEM). It can be used to study the magnetic states of the surfaces of ferromagnetic objects. The first results of experiments using scanning electron microscopy with analysis of the spin directions to obtain images with magnetic contrast are presented. Problems connected with the implementation of this procedure in the case of a conventional SEM with a relatively low vacuum are discussed, and factors affecting the choice of optimal experimental conditions are analyzed.  相似文献   

19.
郑驰超  彭虎  韩志会 《声学学报》2012,37(6):637-641
为解决广义相干系数用于合成孔径成像中所存在的运算量大,图像对比度改善有限等问题,提出空间广义相干系数加权成像方法。该算法根据单个孔径成像结果之间的相干性来计算相干系数,通过加权空间合成进行成像。采用对FieldⅡ仿真点目标和吸声斑目标的数据进行成像表明,算法不仅使运算量减少N(N为阵元数)倍,而且相对于传统的广义相干系数算法,算法对散射点成像可提高信噪比7 dB,对于吸声斑成像可提高对比度3.2 dB。可见算法可以有效地提高成像速度和成像质量。   相似文献   

20.
We report the first (to our knowledge) far-field ghost images formed with phase-sensitive classical-state light and compare them with ghost images of the same object formed with conventional phase-insensitive classical-state light. To generate signal and reference beams with phase-sensitive cross correlation, we used a pair of synchronized spatial light modulators that imposed random, spatially varying, anticorrelated phase modulation on the outputs from 50-50 beam splitting of a laser beam. In agreement with theory, we found the phase-sensitive image to be inverted, whereas the phase-insensitive image is erect, with both having comparable spatial resolutions and signal-to-noise ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号