首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
本文采用基于自旋极化的密度泛函理论系统研究了 小尺寸钴团簇的几何结构和电子结构特性。随尺寸的递增,团簇的基态几何结构由一维演变为三维的几何构型。总磁矩随尺寸的增加线性递增,并呈现奇偶交替的现象。从所研究的系统中分离一个Co原子带正电的团簇体系需要的能量相对较大。本文对体系的电子亲和能(EA)以及离化势(IP)也进行了讨论。  相似文献   

2.
用密度泛函理论(DFT)的B3LYP/6-311G*方法,对SiCmN(m=1-7)团簇的几何构型、振动频率和基态能量等性质进行了研究,讨论了化学键的特征和热力学稳定性。振动频率和振动强度被用来判断体系的基态结构。结果表明,m=1~5的团簇为线状结构,m=6、7的团簇为环状结构。m增大过程中,线状团簇自旋多重度均为2,而环状团簇出现2、4和6自旋多重度。能量的二次差分值表明m为奇数的团簇比m为偶数的更为稳定。  相似文献   

3.
用密度泛函理论(DFT)的B3LYP/6-311G*方法,对SiCmN(m=1-7)团簇的几何构型、振动频率和基态能量等性质进行了研究,讨论了化学键的特征和热力学稳定性。振动频率和振动强度被用来判断体系的基态结构。结果表明,m=1~5的团簇为线状结构,m=6、7的团簇为环状结构。m增大过程中,线状团簇自旋多重度均为2,而环状团簇出现2、4和6自旋多重度。能量的二次差分值表明m为奇数的团簇比m为偶数的更为稳定。  相似文献   

4.
用密度泛函理论(DFT)中的杂化密度泛函B3LYP方法,在6—31G(d)的水平上对Si6N2团簇的可能结构进行了几何结构优化和电子结构计算,得到了16个可能的异构体.Si6N2团簇的最稳定结构是有4个Si-N键和4个Si—Si键的三维结构.自然键轨道方法分析成键性质的结果表明,Si—N键中Si原子向N原子有较大的电荷转移,因此Si-N原子间有较强的电相互作用;最强的IR和Raman谱峰分别位于1359.14cm^-1和1366.29cm^-1处;并计算了Si6N2团簇的最稳定结构的极化率和超极化率.  相似文献   

5.
采用密度泛函理论计算方法系统研究了B36团簇组装一维纳米线的几何结构、电子结构及稳定性.发现两种不同构型的B36团簇组装纳米线静态结构能量相同,且均为动力学稳定结构,但二者电子结构明显不同:分别呈现出半金属和小带隙半导体特征.对两类纳米线的H原子吸附显示:半金属纳米线转变为半导体,而半导体纳米线仍保持为半导体,但带隙明显增大.表明H原子吸附对于B36团簇组装纳米线的电子结构具有明显的调控作用.  相似文献   

6.
采用密度泛函理论(DFT)B3LYP方法在6-311+G(d,p)基组水平,对CaSi_n(n=1~10)的结构进行优化,得出各个尺寸下团簇处于最低能量的结构模型,并对其稳定性等物理化学性质进行理论研究,表明CaSi_2、CaSi_5和CaSi_9为幻数团簇.  相似文献   

7.
利用密度泛函理论中的B3LYP/LanL2DZ方法对PdnZr (n = 2–8)团簇的几何结构、稳定性、电子性质进行了研究。在优化出的结构的基础上,讨论了PdnZr (n = 2–8) 团簇的生长模式,计算了团簇基态的平均结合能,离解能,二阶能量差分以及最高占据轨道与最低空轨道之间的能隙。研究表明,较大尺度的PdnZr (n = 2–8)团簇的基态是通过在Pdn-1Zr的基础上增加一个Pd原子并与其中的Zr原子相连而形成的;在纯钯团簇中掺杂锆原子后可以提高团簇的稳定性,多数情况下可以降低团簇的化学反应活性;PdnZr(n=2-8)基态团簇中的电荷转移总是从Zr原子到其他Pd原子。  相似文献   

8.
采用基于密度泛函理论的Dmol3模拟软件包对AunCdn(1≤n≤6)团簇的几何结构进行优化,并对其能量和电子性质进行了分析。结果表明:n=1-2,团簇的最低能量结构是平面结构;n=3-6,结构为三维立体结构。随着团簇尺寸的增加,团簇的平均结合能呈上升趋势。最高占据轨道和最低未占据轨道之间的能隙,电子亲和势,和电离势呈现明显的奇偶变化,团簇的幻数为n=2,4,6。  相似文献   

9.
采用基于密度泛函理论的Dmol~3模拟软件包对Au_nCd_n(1≤n≤6)团簇的几何结构进行优化,并对其能量和电子性质进行了分析.结果表明:n=1-2,团簇的最低能量结构是平面结构;n=3-6,结构为三维立体结构.随着团簇尺寸的增加,团簇的平均结合能呈上升趋势.最高占据轨道和最低未占据轨道之间的能隙,电子亲和势,和电离势呈现明显的奇偶变化,团簇的幻数为n=2,4,6.  相似文献   

10.
陈亮  徐灿  张小芳 《物理学报》2009,58(3):1603-1607
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G(d)基组水平上对MgO纳米管团簇的二元环双管、三元环、三元环双管三种构型共21个团簇进行优化,对各构型的平均结合能、能隙、平均原子电荷以及总电荷密度进行了理论研究. 结果表明,平均结合能和配位数呈线性关系;随着纳米管的生长,团簇的稳定性增加,其中以三元环纳米管最为稳定;生长过程中发生原子间的电荷转移现象,预测出至无限长时的平均原子电荷分别为1298,1270,1306;混合离子共价键始终存在于MgO纳米管团簇之中. 关键词: 氧化镁 纳米管团簇 密度泛函理论 电子结构  相似文献   

11.
利用密度泛函理论研究了Al12N和Al12B团簇的原子结构和电子性质,通过各种异构体的比较,发现两种掺杂团簇的最低能量结构都是完好的二十面体(Ih)结构,N(B)原子占据在二十面体的中心.高对称性团簇形成稀疏离散的电子态密度和大的电子能隙.在Al-N之间发生较大的电荷转移.因此我们建议把Al12N团簇看作是碱金属超原子,Al12B团簇看作是卤素超原子,用来构造团簇组装固体.  相似文献   

12.
MgBn(n=1-17)团簇的密度泛函理论研究   总被引:1,自引:0,他引:1  
本文从第一性原理出发,采用密度泛函理论(DFT)的杂化密度泛函B3LYP方法,在6-31G(d)全电子基组水平上对MgBn(n=1~17)团簇各种可能的构型进行结构优化和频率分析,预测了各团簇的最低能量结构.结果表明MgBn团簇主要有两种生长模式.同时对各团簇最低能量结构的能隙、结合能等电子性质进行了分析,由二阶能量差分及能隙随团簇尺寸的变化规律可以得到MgB6、MgB9、MgB13是比较稳定的团簇.通过NBO对自然电荷布居及成键特性进行分析,得到Mg原子带正电,以s轨道参与成键,B原子主要带负电,一部分B原子之间以sp杂化形成离域π键,有利于增强稳定性,其他B原子主要以s、p轨道参与成键.  相似文献   

13.
本文从第一性原理出发,采用密度泛函理论(DFT)的杂化密度泛函B3LYP方法,在6-31G(d)全电子基组水平上对MgBn(n=1-17)团簇各种可能的构型进行结构优化和频率分析,预测了各团簇的最低能量结构。结果表明MgBn 团簇主要有两种生长模式。同时对各团簇最低能量结构的能隙、结合能等电子性质进行了分析,由二阶能量差分及能隙随团簇尺寸的变化规律可以得到MgB6、MgB9、MgB13是比较稳定的团簇。通过NBO对自然电荷布居及成键特性进行分析,得到Mg原子带正电,以s轨道参与成键,B原子主要带负电,一部分B原子之间以sp杂化形成离域π键,有利于增强稳定性,其他B原子主要以s、p轨道参与成键。  相似文献   

14.
吴海平  陈栋国  黄德财  邓开明 《物理学报》2012,61(3):37101-037101
通过基于密度泛函理论的广义梯度近似GGA+U方法对铁磁相SrCoO3的电子结构和磁学性质进行了系统研究.结果表明:随着U值的增大,对于Co离子,主自旋方向的t2g和eg态向低能级移动,而次自旋方向的t2g和eg态向高能级移动;O2p电子态的分布基本不随U变化.能带结构表明,U大约在7-8eV之间时,SrCoO3由金属性转变为半金属性.U值小于7eV时,Co离子的磁矩随着U值的增大几乎成线性增大,而当U大于7eV后基本保持不变.结合实验结果,本文认为U取8eV时得到的计算结果更为合理,Co离子的磁矩为3.19μв,且SrCoO3表现出半金属特性.  相似文献   

15.
张奕  陶向明  谭明秋 《中国物理 B》2017,26(4):47401-047401
In this work we have used density-functional theory methods such as full-potential local orbital minimum basis(FPLO) and ELK-flapw to study the electronic structure of newly discovered Laves phase superconductor CaIr_2.The calculation of density of states(DOS) indicates that the bands near Fermi level are mostly occupied by the d-electrons of iridium.The simulation of de Haas-van Alphen(dHvA) effect has been performed by using Elk code to check the Fermi surface topology.The results show that there exist four Fermi surfaces in CaIr_2,including two electron-type and two hole-type surfaces.The optical response properties of CaIr_2 have been calculated in the dipole-transition approximations combined with including intra-band Drude-like terms.In the optical spectrum σ(ω) shows that the crossover from intraband to inter-band absorption occur near 1.45 eV.Further analysis on the electron energy loss spectra(EELS) matches the conclusion from that of optical conductivity σ(ω).  相似文献   

16.
17.
结合半经验Gupta原子间相互作用势及遗传算法,采用密度泛函方法系统计算研究了中性及带电Cu_n、Cu_n~±(n=12-16)团簇的基态与低激发态的几何结构与电子结构.结果表明:带电明显影响团簇结构稳定性,除Cu_(12)~-及Cu_(15)~+基态结构与相应中性团簇(Cu_(12)及Cu_(15)一致外,其它带电团簇基态结构与相应中性团簇均不相同;带电对团簇近基态同分异构现象也产生影响,全部带正电Cu_n~+(n=12-16)团簇均出现近基态同分异构体,而对中性及带负电团簇同分异构现象并不明显;计算所得Cu_n(n=12-16)团簇的电子离化能、电子亲和势及能隙的变化趋势均与实验结果相一致.  相似文献   

18.
韩晗 《中国物理 B》2013,(7):420-425
Under high pressure, the long believed single-phase material CaB6 was latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties of CaB6 are obtained. The calculated bulk, shear, and Young's moduli of the recently synthesized high pressure phase tI56-CaB6 are larger than those of the low pressure phase. Moreover, the high pressure phase of CaB6 has ductile behaviors, and its ductility increases with the increase of pressure. On the contrary, the calculated results indicate that the low pressure phase of CaB6 is brittle. The calculated Debye temperature indicates that the thermal conductivity of CaB6 is not very good. Furthermore, based on the Christoffel equation, the slowness surface of the acoustic waves is obtained.  相似文献   

19.
The structural,energetic and electronic properties of chiral(n,m)(3≤n≤6,n/2≤m≤n)single-wall copper nanotubes(CuNTs)have been investigated by using projector-augmented wave method based on density-functional theory.The(4,3)CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions,whereas the(5,5)and(6,4)CuNTs should be observed in free-standing and tip-suspended conditions,respectively.The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube.Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk.Current transporting states display different periods and chirality,the combined effects of which lead to weaker chiral currents on CuNTs.  相似文献   

20.
牛纹霞  张红 《中国物理 B》2012,21(2):26802-026802
We investigate the adsorptions of Ar on Al (111) and Ir (111) surfaces at the four high symmetry sites, i.e., top, bridge, fcc- and hcp-hollow sites at the coverage of 0.25 monolayer (ML) using the density functional theory within the generalized gradient approximation of Perdew, Burke and Ernzerhof functions. The geometric structures, the binding energies, the electronic properties of argon atoms adsorbed on Al (111) and Ir (111) surfaces, the difference in electron density between on the Al (111) surface and on the Ir (111) surface and the total density of states are calculated. Our studies indicate that the most stable adsorption site of Ar on the Al (111) surface is found to be the fcc-hollow site for the (2 × 2) structure. The corresponding binding energy of an argon atom at this site is 0.538 eV/Ar atom at a coverage of 0.25 ML. For the Ar adsorption on Ir (111) surface at the same coverage, the most favourable site is the hcp-hollow site, with a corresponding binding energy of 0.493 eV. The total density of states (TDOS) is analysed for Ar adsorption on Al (111) surface and it is concluded that the adsorption behaviour is dominated by the interaction between 3s, 3p orbits of Ar atom and the 3p orbit of the base Al metal and the formation of sp hybrid orbital. For Ar adsorption on Ir (111) surface, the conclusion is that the main interaction in the process of Ar adsorption on Ir (111) surface comes from the 3s and 3p orbits of argon atom and 5d orbit of Ir atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号