首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The preparation, (1)H, (13)C, and (19)F NMR structural characterization as well as with DFT-based theoretical calculations of stable dialkyl ether/poly(hydrogen fluoride) complexes are reported. Dimethyl ether/poly(hydrogen fluoride) (DMEPHF), are stable complexes of particular interest and use. The DFT calculations, that are in agreement with NMR data, suggest a cyclic poly(hydrogen fluoride) bridged structure for DMEPHF. The complex, DME-5 HF was found to be a convenient and effective new fluorinating agent with the ease of workup and applied to several fluorination reactions, such as the hydrofluorination and bromofluorination of alkenes, and fluorination of alcohols giving good to excellent yield with high selectivity. Homologous dialkyl ether/poly(hydrogen fluoride) (R(2)O/[HF](n,), R = Et, nPr) systems are also stable and suitable for fluorination reactions.  相似文献   

2.
Homogeneous metal complex and salt catalysts were developed for the reductive transformation of CO2 with Si‐based reducing agents. Cu‐bisphosphine complexes were found to be excellent catalysts for the hydrosilylation of CO2 with polymethylhydrosiloxane (PMHS). The Cu complexes also showed high catalytic activity and a wide substrate scope for formamide synthesis from amines, CO2, and PMHS. Simple fluoride salts such as tetrabutylammonium fluoride acted as good catalysts for the reductive conversion of CO2 to formic acid in the presence of hydrosilane, disilane, and metallic Si. Based on the kinetics, isotopic experiments, and in‐situ NMR measurements, the reaction mechanism for both catalyst systems, the Cu complex and the fluoride salt, have been proposed.  相似文献   

3.
Alkylation of isobutane with C3-C5 olefins has been practiced commercially since the 1940s. Indeed, alkylation which is mainly formed by multibranched paraffins,has a rather low vapor pressure, high octane numbers (RON and MON) and a low sensitive factor. In the past twelve years, about 20 alkylation plants using either HF or H2SO4 catalysts have been built in China[1]. Concerns have been raised about the safety and environmental impact of the handing of the very large quantities of these liquid acids used in alkylation today and a great deal of time and money has been spent in the past 20 years in attempts to develop alkylation catalyst and process that are more environmentally friend than current industrial technology[2]. To date,no process has been announced that seems to be of commercial interest, but two possible exceptions (Topöse process and UOP Alkylene process) are discussed in this paper. Many difficult technical challenges must be surmount in the next few years for a new solid catalyst alkylation process to be commercialized successfully.  相似文献   

4.
We describe a novel and intriguing strategy for the construction of efficient heterogeneous catalysts by hypercrosslinking catalyst molecules in a one‐pot Friedel–Crafts alkylation reaction. The new hypercrosslinked polymers (HCPs) as porous solid catalysts exhibit the combined advantages of homogeneous and heterogeneous catalysis, owing to their high surface area, good stability, and tailoring of catalytic centers on the frameworks. Indeed, a new class of metalloporphyrin‐based HCPs were successfully synthesized using modified iron(III) porphyrin complexes as building blocks, and the resulting networks were found to be excellent recyclable heterogeneous catalysts for the hetero‐Diels–Alder reaction of unactivated aldehydes with 1,3‐dienes. Moreover, this new strategy showed wide adaptability, and many kinds of homogeneous‐like solid‐based catalysts with high catalytic performance and excellent recyclability were also constructed.  相似文献   

5.
Cyclometalated iridium complexes are found to be versatile catalysts for the direct reductive amination (DRA) of carbonyls to give primary amines under transfer‐hydrogenation conditions with ammonium formate as both the nitrogen and hydrogen source. These complexes are easy to synthesise and their ligands can be easily tuned. The activity and chemoselectivity of the catalyst towards primary amines is excellent, with a substrate to catalyst ratio (S/C) of 1000 being feasible. Both aromatic and aliphatic primary amines were obtained in high yields. Moreover, a first example of homogeneously catalysed transfer‐hydrogenative DRA has been realised for β‐keto ethers, leading to the corresponding β‐amino ethers. In addition, non‐natural α‐amino acids could also be obtained in excellent yields with this method.  相似文献   

6.
Linear alkylbenzene sulfonic acid, the largest-volume synthetic surfactant, in addition to its excellent performance, is important due to its biodegradable environmental friendliness, as it has a straight chain and is prepared by the sulphonation of linear alkylbenzenes (LAB). To ensure environmental protection, the commercial benzene alkylation catalysts HF or AlCl3 are replaced and we have developed a clean LAB production process using a pillared clay catalyst capable of not only replacing the conventional homogeneous catalysts, but also having high selectivity for the best biodegradable 2-phenyl LAB isomer. Pillared clay catalysts having high Br?nsted acidity show efficient conversion in gas phase alkylation of benzene with 1-octene with a good 2-phenyl octane selectivity.  相似文献   

7.
阮宇红  刘耀芳  刘植昌 《催化学报》2004,25(12):955-961
 以杂多酸为催化剂,应用量子化学计算方法,从分子结构和微观角度研究了异丁烷与丁烯的多相催化反应过程及催化剂失活的原因,比较了液体酸和固体酸催化烷基化反应的差别. 结果表明,固体酸催化剂的失活问题不可避免,因而不可能长时期运转,必须配合催化剂的再生工艺才有可能实现工业化应用. 液体酸的酸中心强度较均匀,有利于催化烷基化反应,开发无毒无污染的新型液体酸烷基化催化剂也是一个良好的努力方向.  相似文献   

8.
The alkylation of amines by alcohols is a broadly applicable, sustainable, and selective method for the synthesis of alkyl amines, which are important bulk and fine chemicals, pharmaceuticals, and agrochemicals. We show that Cr complexes can catalyze this C−N bond formation reaction. We synthesized and isolated 35 examples of alkylated amines, including 13 previously undisclosed products, and the use of amino alcohols as alkylating agents was demonstrated. The catalyst tolerates numerous functional groups, including hydrogenation-sensitive examples. Compared to many other alcohol-based amine alkylation methods, where a stoichiometric amount of base is required, our Cr-based catalyst system gives yields higher than 90 % for various alkyl amines with a catalytic amount of base. Our study indicates that Cr complexes can catalyze borrowing hydrogen or hydrogen autotransfer reactions and could thus be an alternative to Fe, Co, and Mn, or noble metals in (de)hydrogenation catalysis.  相似文献   

9.
The alkylation of amines by alcohols is a broadly applicable, sustainable, and selective method for the synthesis of alkyl amines, which are important bulk and fine chemicals, pharmaceuticals, and agrochemicals. We show that Cr complexes can catalyze this C?N bond formation reaction. We synthesized and isolated 35 examples of alkylated amines, including 13 previously undisclosed products, and the use of amino alcohols as alkylating agents was demonstrated. The catalyst tolerates numerous functional groups, including hydrogenation‐sensitive examples. Compared to many other alcohol‐based amine alkylation methods, where a stoichiometric amount of base is required, our Cr‐based catalyst system gives yields higher than 90 % for various alkyl amines with a catalytic amount of base. Our study indicates that Cr complexes can catalyze borrowing hydrogen or hydrogen autotransfer reactions and could thus be an alternative to Fe, Co, and Mn, or noble metals in (de)hydrogenation catalysis.  相似文献   

10.
A borrowing‐hydrogen reaction between amines and alcohols is an atom‐economic way to prepare alkylamines, ideally with water as the sole byproduct. Herein, nickel catalysts are used for direct N‐alkylation of hydrazides and arylamines using racemic alcohols. Moreover, a nickel catalyst of (S )‐binapine was used for an asymmetric N‐alkylation of benzohydrazide with racemic benzylic alcohols.  相似文献   

11.
A new stable structure has been found for the anion clusters of hydrogen fluoride. The ab initio method was used to optimize the structures of the (HF)(3)(-), (HF)(4)(-), (HF)(5)(-), and (HF)(6)(-) anion clusters with an excess "solvated" electron. Instead of the well-known "zig-zag" (HF)(n)(-) structure, a new form, (HF)(n-1)F(-)···H, was found with lower energy. In this new form, the terminal hydrogen atom in the (HF)(n)(-) chain is separated from the other part of the cluster and the inner hydrogens transfer along the hydrogen bonds toward the outside fluoride. The negative charge also transfers from the terminal HF molecule of the chain to the center fluoride atoms. The (HF)(n)(-) clusters for n = 4, 5, and 6 have not yet been observed experimentally. These results should assist in the search for these systems and also provide a possible way to study the proton and electron transfer in some large hydrogen bonding systems.  相似文献   

12.
The development of efficient and eco-friendly methods for the synthesis of elaborate amines is highly desired as they are valuable chemicals. The catalytic alkylation of amines using alcohols as alkylating agents, through the so-called borrowing hydrogen process, satisfies several of the principles of green chemistry. In this paper, four neutral half-sandwich complexes of Ru(II), Rh(III), and Ir(III) have been synthesized and tested as catalysts in the N-benzylation of amines with benzyl alcohol. The new derivatives contain a N^N′ anionic ligand derived from 5-(pyridin-2-ylmethylene)hydantoin (Hpyhy) that has never been tested in metal complexes with catalytic applications. In particular, the Ir derivatives, [(Cp*)IrX(pyhy)] (X = Cl or H), exhibit high activity along with good selectivity in the process. Indeed, the scope of the optimized protocol has been proved in the benzylation of several primary and secondary amines. The selectivity towards monoalkylated or dialkylated amines has been tuned by adjusting the amine:alcohol ratio and the reaction time. Experimental results support a mechanism consisting of three consecutive steps, two of which are Ir catalyzed, and a favorable condensation step without the assistance of the catalyst. Moreover, an unproductive competitive pathway can operate when the reaction is performed in open-air vessels, due to the irreversible release of H2. This route is hampered when the reaction is carried out in close vessels, likely because the release of H2 is reversed through metal-based heterolytic cleavage. From our viewpoint, these results show the potential of the new catalysts in a very attractive and promising methodology for the synthesis of amines.  相似文献   

13.
Possibly because homogeneous palladium catalysts are not typical borrowing hydrogen catalysts and ligands are thus ineffective in catalyst activation under conventional anaerobic conditions, they had not been used in the N‐alkylation reactions of amines/amides with alcohols in the past. By employing the aerobic relay race methodology with Pd‐catalyzed aerobic alcohol oxidation being a more effective protocol for alcohol activation, ligand‐free homogeneous palladiums are successfully used as active catalysts in the dehydrative N‐alkylation reactions, giving high yields and selectivities of the alkylated amides and amines. Mechanistic studies implied that the reaction most probably proceeds via the novel relay race mechanism we recently discovered and proposed.  相似文献   

14.
N-Sulfonic acid poly(4-vinylpyridinum) hydrogen sulfate has been developed as a recyclable solid acid catalyst for the acetylation of alcohols, phenols, thiols, and amines, as well as the 1,1- diacetylation of aldehydes under solvent-free conditions at room temperature. The acetylated products were formed in good to excellent yields over short reaction times, and the catalyst could be readily recovered by filtration and used several times without any discernible loss in activity. The hydrogen sulfate anion of the catalytic system was found to play a critical role in enhancing the reaction time and yield of the acetylation reaction.  相似文献   

15.
The N‐alkylation of amines or ammonia with alcohols is a valuable route for the synthesis of N‐alkyl amines. However, as a potentially clean and economic choice for N‐alkyl amine synthesis, non‐noble metal catalysts with high activity and good selectivity are rarely reported. Normally, they are severely limited due to low activity and poor generality. Herein, a simple NiCuFeOx catalyst was designed and prepared for the N‐alkylation of ammonia or amines with alcohol or primary amines. N‐alkyl amines with various structures were successfully synthesized in moderate to excellent yields in the absence of organic ligands and bases. Typically, primary amines could be efficiently transformed into secondary amines and N‐heterocyclic compounds, and secondary amines could be N‐alkylated to synthesize tertiary amines. Note that primary and secondary amines could be produced through a one‐pot reaction of ammonia and alcohols. In addition to excellent catalytic performance, the catalyst itself possesses outstanding superiority, that is, it is air and moisture stable. Moreover, the magnetic property of this catalyst makes it easily separable from the reaction mixture and it could be recovered and reused for several runs without obvious deactivation.  相似文献   

16.
取代硫酸、氢氟酸等液体酸催化剂的途径   总被引:49,自引:0,他引:49  
吴越 《化学进展》1998,10(2):158-171
高效固体酸催化剂无论对现有工业生产, 还是从环保考虑, 都是十分重要的。特别是对那些使用液体酸诸如H2SO4、HF 和A lCl3 等为催化剂的液相酸工艺。近年来考虑到均相和多相酸催化反应中起决定作用的酸位(中心) 之间的类似性, 根据近代均相酸催化理论, 通过对不同酸位(L 酸、B 酸、超强酸) 本质的分析, 对强酸催化剂提出了一个统一的酸结构模型。以此为依据, 可对一些强酸催化剂进行剪裁。  相似文献   

17.
Both pivaloyl cation in the presence of hydride donors and protonated pivalaldehyde in superacid media (both aprotic and protic) rearrange to protonated methyl isopropyl ketone involving gitionic dicationic intermediates. In our earlier studies we have found that the rearrangement of pivaladehyde to methyl isopropyl ketone occurs quantitatively in the presence of various superacidic media such as anhydrous HF, triflic acid, boron trifluoride-2,2,2-trifluoroethanol complex (BF(3).2CF(3)CH(2)OH) etc. Our present study with environmentally more benign and stable amine:HF complexes, namely pyridinium poly(hydrogen fluoride) (PPHF) (5), poly(4-vinylpyridinium) poly(hydrogen fluoride) (6), and poly(ethyleniminium) poly(hydrogen fluoride) (PEIHF) (7) shows that these modified HF equivalents can carry sufficient amount of immobilized HF and provide ample acidity for complete isomerization of pivalaldehyde to methyl isopropyl ketone. Calculations on protioformyl, acetyl and pivaloyl dications at the B3LYP/6-311 ++ G(d,p) and CCSD(T)/6-311 ++ G(d,p)//B3LYP/6-311 ++ G(d,p) levels have been performed to compare the nature of protosolvation of formyl, acetyl, pivaloyl cations and protonated pivaladehyde in superacid media. These studies further suggest protosolvation of protonated pivalaldehyde leading to gitionic dications at high acidities resulting in the carbocatioinic rearrangement. The reported carbocationic rearrangement under superacidic activation represents a novel solution chemistry equivalent of the well known gas-phase McLafferty rearrangement.  相似文献   

18.
Hydrogen fluoride is a basic fluorinating reagent, but handling it is difficult. For this reason, some modified fluorinating reagents such as HF-pyridine, Et3N-HF, and poly(hydrogen fluoride) complex have been developed. Those reagents, however, still require aqueous work-up procedures which generate hydrogen fluoride. Recently, ionic liquids have received much attention because of the ease in handling them and the possibility of non-aqueous work-up. An ionic liquid, 3-ethyl-1-methyimidazolium oligo hydrogen fluoride (EMIMF(HF)2.3), which is stable in air and moisture, can be used as a hydrogen fluoride equivalent for some fluorination reactions; it does not require an aqueous work-up.  相似文献   

19.
 研究了邻苯二酚与乙醇气固相单醚化反应用固体酸催化剂表面上的积炭行为,并用TG-DTA,BET,GC-MS,FT-IR和元素分析等手段对积炭物种进行了表征.结果表明,催化剂上有两种类型的积炭,一类属可溶性积炭,主要由二苯醚及其衍生物组成,可在低温燃烧除去;另一类属不可溶性积炭,主要为缺氢的芳烃类聚合物或类石墨碳,需在高温下才能烧除.积炭主要发生在4~8nm范围的中孔内,导致反应后的催化剂大孔范围的孔分布所占的分数增大.随着反应的进行,总积炭量逐渐增多.  相似文献   

20.
[reaction: see text] An efficient methodology for the reductive alkylation of secondary amine with aldehyde and Et(3)SiH using an iridium complex as a catalyst has been developed. For example, treatment of dibutylamine with butyraldehyde and Et(3)SiH (a 1:1:1 molar amount of amine, aldehyde, and silane) in 1,4-dioxane at 75 degrees C under the influence of a catalytic amount of [IrCl(cod)](2) gave tributylamine in quantitative yield. In this reaction, no reduction of aldehyde took place. It was found that IrCl(3), which is a starting material for preparation of iridium complexes such as [IrCl(cod)](2), acts as an efficient catalyst for the present reductive alkylation of amine. In addition, a cheaper, easy-to-handle, and environmentally friendly reducing reagent such as polymethylhydrosiloxane (PMHS) in place of Et(3)SiH was also useful. Thus, a variety of secondary amines could be alkylated by allowing them to react with aldehydes and PMHS in the presence of an iridium catalyst to afford the corresponding tertiary amines in good to excellent yields. From the deuterium label experiments, it was revealed that silane and water, generated during the formation of enamine by the reaction of amine and aldehyde, seem to behave as a hydrogen source. The catalytic cycle was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号