首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the problem of optimal control for rapidity of the heating of a heat-sensitive layer under constraints on the control (the temperature of the heating medium or the heat flux) and maximal values of the stress intensity in the plastic region of deformation of the material. We propose an algorithm for solving the problem that presumes it has been reduced to the inverse problem of thermoplasticity. For the case of one-sided heating we give a numerical analysis of the direct and inverse problems of thermoplasticity. Translated fromMatematichni Metody i Fiziko-Mekhanichni Polya, Vol. 38, 1995.  相似文献   

2.
The Neumann problem for Laplace's equation in a polygonal domain is associated with the exterior Dirichlet problem obtained by requiring the continuity of the potential through the boundary. Then the solution is the simple layer potential of the charge q on the boundary. q is the solution of a Fredholm integral equation of the second kind that we solve by the Galerkin method. The charge q has a singular part due to the corners, so the optimal order of convergence is not reached with a uniform mesh. We restore this optimal order by grading the mesh adequately near the corners. The interior Dirichlet problem is solved analogously, by expressing the solution as a double layer potential.  相似文献   

3.
In this paper, we present some new properties of the Mitra‐Wan forestry model written as a discrete‐time optimal control problem. For this problem, the set of stationary states is characterized. For the optimal long‐run management, we consider the following optimality criteria: average optimality, good control policies, bias optimality, and overtaking optimality. We establish relationships between these criteria and show that the value of average optimal policies is constant and equals the value in the optimal stationary state.  相似文献   

4.
In this paper we consider an optimal control system described byn-dimensional heat equation with a thermal source. Thus problem is to find an optimal control which puts the system in a finite time T, into a stationary regime and to minimize a general objective function. Here we assume there is no constraints on control. This problem is reduced to a moment problem.We modify the moment problem into one consisting of the minimization of a positive linear functional over a set of Radon measures and we show that there is an optimal measure corresponding to the optimal control. The above optimal measure approximated by a finite combination of atomic measures. This construction gives rise to a finite dimensional linear programming problem, where its solution can be used to determine the optimal combination of atomic measures. Then by using the solution of the above linear programming problem we find a piecewise-constant optimal control function which is an approximate control for the original optimal control problem. Finally we obtain piecewise-constant optimal control for two examples of heat equations with a thermal source in one-dimensional.  相似文献   

5.
In this paper we present a new approach to solve a two-level optimization problem arising from an approximation by means of the finite element method of optimal control problems governed by unilateral boundary-value problems. The problem considered is to find a minimum of a functional with respect to the control variablesu. The minimized functional depends on control variables and state variablesx. The latter are the optimal solution of an auxiliary quadratic programming problem, whose parameters depend onu.Our main idea is to replace this QP problem by its dual and then apply the barrier penalty method to this dual QP problem or to the primal one if it is in an appropriate form. As a result we obtain a problem approximating the original one. Its good property is the differentiable dependence of state variables with respect to the control variables. Furthermore, we propose a method for finding an approximate solution of a penalized lower-level problem if the optimal solution of the original QP problem is known. We apply the result obtained to some optimal shape design problems governed by the Dirichlet-Signorini boundary-value problem.This research was supported by the Academy of Finland and the Systems Research Institute of the Polish Academy of Sciences.  相似文献   

6.
We propose a numerical method of constructing the optimal heating regime for a thermally stressed unbounded layer with constraints on the control and thermal stresses. Solving the nonlinear optimization problem for rapidity is reduced to solving the inverse problem of thermoelasticity. The results of numerical studies are presented. Translated fromMatematichni Metody i Fiziko-Mekhanichni Polya, Vol. 38, 1995.  相似文献   

7.
We consider the problem of using heat sources for optimal control of the distribution of the vertical axisymmetric thermal displacements of a thin round plate with edge clamped at an angle of revolution. On the basis of the method of the inverse thermoelasticity problem we construct a solution of the control problem. For specific cases of heating the plate we carry out a numerical analysis of the behavior of the optimal control.Translated fromMatematicheskie Metody i Fiziko-Mekhanicheskie Poly a, Issue 36, 1992, pp. 105–110.  相似文献   

8.
We justify the application of the averaging method to optimal control problems for systems of differential equations on the half-line. For optimal control problems for systems of differential equations linear in the control, we prove the existence of optimal controls for the exact and averaged problems. We show that an optimal control in the averaged problem is ɛ-optimal in the exact problem.  相似文献   

9.
In optimal control problems frequently pointwise control constraints appear. We consider a finite string that is fixed at one end and controlled via Dirichlet conditions at the other end with a given upper bound M for the L -norm of the control. The problem is to control the string to the zero state in a given finite time. If M is too small, no feasible control exists. If M is large enough, the optimal control problem to find an admissible control with minimal L 2-norm has a solution that we present in this paper.  相似文献   

10.
In this paper, we present a two-grid mixed finite element scheme for distributed optimal control governed by general elliptic equations. –P1 mixed finite elements are used for the discretization of the state and co-state variables, whereas piecewise constant function is used to approximate the control variable. We first use a new approach to obtain the superclose property between the centroid interpolation and the numerical solution of the optimal control u with order h2 under the low regularity. Based on the superclose property, we derive the optimal a priori error estimates. Then, using a postprocessing projection operator, we get a second-order superconvergent result for the control u. Next, we construct a two-grid mixed finite element scheme and analyze a priori error estimates. In the two-grid scheme, the solution of the elliptic optimal control problem on a fine grid is reduced to the solution of the elliptic optimal control problem on a much coarser grid and the solution of a linear algebraic system on the fine grid and the resulting solution still maintains an asymptotically optimal accuracy. Finally, a numerical example is presented to verify the theoretical results.  相似文献   

11.
In this paper, we study a Dirichlet optimal control problem associated with a linear elliptic equation the coefficients of which we take as controls in the class of integrable functions. The coefficients may degenerate and, therefore, the problems may exhibit the so-called Lavrentieff phenomenon and non-uniqueness of weak solutions. We consider the solvability of this problem in the class of W-variational solutions. Using a concept of variational convergence of constrained minimization problems in variable spaces, we prove the existence of W-solutions to the optimal control problem and provide the way for their approximation. We emphasize that control problems of this type are important in material and topology optimization as well as in damage or life-cycle optimization.  相似文献   

12.
In this paper we examine optimal control problems governed by maximal monotone integrodifferential inclusions inR N . First we establish the existence of an optimal control. Then we show that the value of the problem depends continuously on a parameter appearing in all the data. Then we introduce the relaxed system, we show that under very general hypotheses it has a solution and that its value equals that of the original problem. Subsequently we show that relaxability and performance stability are equivalent concepts. Finally we specialize our results to the class of controlled differential variational inequalities.Research supported by NSF Grant DMS-8802688  相似文献   

13.
Lin  Xiuxiu  Chen  Yanping  Huang  Yunqing 《Numerical Algorithms》2020,83(3):1145-1169

In this paper, we investigate a distributed optimal control problem governed by elliptic partial differential equations with L2-norm constraint on the state variable. Firstly, the control problem is approximated by hp spectral element methods, which combines the advantages of the finite element methods with spectral methods; then, the optimality conditions of continuous system and discrete system are presented, respectively. Next, hp a posteriori error estimates are derived for the coupled state and control approximation. In the end, a projection gradient iterative algorithm is given, which solves the optimal control problems efficiently. Numerical experiments are carried out to confirm that the numerical results are in good agreement with the theoretical results.

  相似文献   

14.
In this paper, we study the quadratic optimal control problem on the half linett o, for nonautonomous control processes in Hilbert spaces. We prove that the quadratic optimal control problem has a solution if, and only if, an associated Riccati equation has a positive solution fortt o. The optimal control is given in feedback form. If a detectability assumption holds, then we prove that the optimal control is a stabilizing feedback control when the associated Riccati equation has a positive solution which is bounded fortt o.This work was performed under the auspices of the National Research Council of Italy (CNR).  相似文献   

15.
We consider optimal control problems with functional given by the ratio of two integrals (fractional optimal control problems). In particular, we focus on a special case with affine integrands and linear dynamics with respect to state and control. Since the standard optimal control theory cannot be used directly to solve a problem of this kind, we apply Dinkelbach’s approach to linearize it. Indeed, the fractional optimal control problem can be transformed into an equivalent monoparametric family {Pq} of linear optimal control problems. The special structure of the class of problems considered allows solving the fractional problem either explicitly or requiring straightforward classical numerical techniques to solve a single equation. An application to advertising efficiency maximization is presented. This work was partially supported by the Università Ca’ Foscari, Venezia, Italy, the MIUR (PRIN cofinancing 2005), the Council for Grants (under RF President) and State Aid to Fundamental Science Schools (Grant NSh-4113.2008.6). We thank Angelo Miele, Panos Pardalos and the anonymous referees for comments and suggestions.  相似文献   

16.
In this article, we study the dynamics of a piecewise (in time) distributed optimal control problem for the Boussinesq equations which model velocity tracking over time coupled to thermal dynamics. We also study the dynamics of semidiscrete approximation of this problem. We prove that the rates of velocity tracking coupled to thermal dynamics are exponential and that the difference between the solution of the semi‐discrete piecewise optimal control problem and the desired states in L2 and H1 norms decay to zero exponentially as n→∞. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Integrating logical constraints into optimal control problems is not an easy task. In fact, optimal control problems are usually continuous while logical constraints are naturally expressed by integer (binary) variables. In this article we are interested is a particular form of an LQR optimal control problem: the energy (control L2 norm) is to be minimized, system dynamic is linear and logical constraints on the control use are to be fulfilled. Even if the starting continuous problem is not a complicated one, difficulties arise when integrating the additional logical constraints. First, we will present two different ways of modeling the problem, both of them leading us to Mixed Integer Problems. Furthermore, algorithms (Generalized Outer Approximation, Benders Decomposition and Branch and Cut) are applied on each model and results analyzed. We also present a Benders Decomposition algorithm variant that is adapted to our problem (taking into account its particular form) and we will conclude by looking at the optimal solutions obtained in an interesting physical example: the harmonic spring.  相似文献   

18.
This paper is directed to the analysis of regularity properties of optimal solutions for a nonlinear control problem with convex control constraints. Since the problem formulation is given typically in L -terms, we introduce first the essential limit set as a tool for the local investigation of L -functions. Under second-order conditions of the coercivity type on the solution, a structural result is obtained characterizing the local behavior of the optimal control by means of Lipschitz continuous functions. Further, the consequences for certain discrete approximations are discussed; for uniquely solvable problems, we show the Lipschitz continuity of the optimal control.  相似文献   

19.
Considering the hybrid nature in fed-batch culture of glycerol biconversion to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae, we propose a state-based switching dynamical system to describe the fermentation process. To maximize the concentration of 1,3-PD at the terminal time, an optimal switching control model subject to our proposed switching system and constraints of continuous state inequality and control function is presented. Because the number of the switchings is not known a priori, we reformulate the above optimal control problem as a two-level optimization problem. An optimization algorithm is developed to seek the optimal solution on the basis of a heuristic approach and control parametrization technique. Numerical results show that, by employing the obtained optimal control strategy, 1,3-PD concentration at the terminal time can be increased considerably.  相似文献   

20.
In this paper, we consider a sequence of abstract optimal control problems by allowing the cost integrand, the partial differential operator, and the control constraint set all to vary simultaneously. Using the notions of -convergence of functions,G-convergence of operators, and Kuratowski-Mosco convergence of sets, we show that the values of the approximating problems converge to that of the limit problem. Also we show that a convergent sequence of optimal pairs for the approximating problems has a limit which is optimal for the limit problem. A concrete example of parabolic optimal control problems is worked out in detail.This research was supported by NSF Grant No. DMS-88-02688.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号