首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Raman optical activity (ROA) is pursued as a promising method for structural analyses of sugars in aqueous solutions. In the present study, experimental Raman and ROA spectra of glucose and sorbose obtained in an extended range (50–4000 cm−1) are interpreted using molecular dynamics and density functional theory, with the emphasis on CH stretching modes. A reasonable theoretical basis for spectral interpretation was obtained already at the harmonic level. Anharmonic corrections led to minor shifts of band positions (up to 25 cm−1) below 2000 cm−1, while the CH stretching bands shifted more, by ∼180 cm−1, and better reproduced the experiment. However, the anharmonicities could be included on a relatively low approximation level only, and they did not always improve the harmonic band shapes. The dependence on the structure and conformation shows that the CH stretching ROA spectral pattern is a sensitive marker useful in saccharide structure studies.  相似文献   

2.
《Vibrational Spectroscopy》2002,28(2):209-221
Syngenite (K2Ca(SO4)2·H2O), formed during treatment of manure with sulphuric acid, was studied by infrared, near-infrared (NIR) and Raman spectroscopy. Cs site symmetry was determined for the two sulphate groups in syngenite (P21/m), so all bands are both infrared and Raman active. The split ν1 (two Raman+two infrared bands) was observed at 981 and 1000 cm−1. The split ν2 (four Raman+four infrared bands) was observed in the Raman spectrum at 424, 441, 471 and 491 cm−1. In the infrared spectrum, only one band was observed at 439 cm−1. From the split ν3 (six Raman+six infrared) bands three 298 K Raman bands were observed at 1117, 1138 and 1166 cm−1. Cooling to 77 K resulted in four bands at 1119, 1136, 1144 and 1167 cm−1. In the infrared spectrum, five bands were observed at 1110, 1125, 1136, 1148 and 1193 cm−1. From the split ν4 (six infrared+six Raman bands) four bands were observed in the infrared spectrum at 604, 617, 644 and 657 cm−1. The 298 K Raman spectrum showed one band at 641 cm−1, while at 77 K four bands were observed at 607, 621, 634 and 643 cm−1. Crystal water is observed in the infrared spectrum by the OH-liberation mode at 754 cm−1, OH-bending mode at 1631 cm−1, OH-stretching modes at 3248 (symmetric) and 3377 cm−1 (antisymmetric) and a combination band at 3510 cm−1 of the H-bonded OH-mode plus the OH-stretching mode. The near-infrared spectrum gave information about the crystal water resulting in overtone and combination bands of OH-liberation, OH-bending and OH-stretching modes.  相似文献   

3.
Estrogens are a group of steroid compounds found in the human body that are eventually discharged and ultimately end up in sewer effluents. Since these compounds can potentially affect the endocrine system its detection and quantification in sewer water is important. In this study, estrogens such as estrone (E1), estradiol (E2), estriol (E3), and ethynylestradiol (EE2) were discriminated and quantitated using Raman spectroscopy. Simulated Raman spectra were correlated with experimental data to identify unique marker peaks, which proved to be useful in differentiating each estrogen molecules. Among these marker peaks are Raman modes arising from hydroxyl groups of the estrogen molecules in the spectral region 3200–3700 cm−1. Other Raman modes unique to each of the estrogen samples were also identified, including peaks at 1722 cm−1 for E1 and 2109 cm−1 for EE2, which corresponds to their distinctive structures each containing a different set of functional groups. To quantify the components of estrogen mixtures, the intensities of each identifying Raman bands, at 581 cm−1 for E1, 546 cm−1 for E2, 762 cm−1 for E3 and 597 cm−1 for EE2, were compared and normalized against the intensity of a common peak at 783 cm−1. Quantitative analysis yielded most results within an acceptable 20% error.  相似文献   

4.
The phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O) has been studied using a combination of electron probe analysis and vibrational spectroscopy. Eosphorite is the manganese rich mineral with lower iron content in comparison with the childrenite which has higher iron and lower manganese content. The determined formulae of the two studied minerals are: (Mn0.72,Fe0.13,Ca0.01)(Al)1.04(PO4, OHPO3)1.07(OH1.89,F0.02)·0.94(H2O) for SAA-090 and (Fe0.49,Mn0.35,Mg0.06,Ca0.04)(Al)1.03(PO4, OHPO3)1.05(OH)1.90·0.95(H2O) for SAA-072. Raman spectroscopy enabled the observation of bands at 970 cm−1 and 1011 cm−1 assigned to monohydrogen phosphate, phosphate and dihydrogen phosphate units. Differences are observed in the area of the peaks between the two eosphorite minerals. Raman bands at 562 cm−1, 595 cm−1, and 608 cm−1 are assigned to the ν4 bending modes of the PO4, HPO4 and H2PO4 units; Raman bands at 405 cm−1, 427 cm−1 and 466 cm−1 are attributed to the ν2 modes of these units. Raman bands of the hydroxyl and water stretching modes are observed. Vibrational spectroscopy enabled details of the molecular structure of the eosphorite mineral series to be determined.  相似文献   

5.
The Raman (3200—10cm−1) and infrared (3200—50 cm−1) spectra of gaseous and solid 1-chloro-2-methylpropane and 1-bromo-methylpropane, as well as the Raman spectra of the liquids, have been recorded and assigned. The gauche asymmetric torsion of the 1-chloro-2-methylpropane molecules has been observed at 110 cm−1 in the Raman spectrum of the gas. For the 1-bromo-2-methylpropane molecule, both the trans and gauche asymmetric torsions have been observed at 106.70 and 103.94 cm−1, respectively, along with three additional transitions for the gauche conformer. From these data, the asymmetric potential function for the bromide molecules to V1 = —493 ±16, V2 = 595 ± 18, and V3 = 2006 ± 6 cm−1 with the trans conformer being more stable than the gauche conformer by 44 ± 20 cm−1. The trans form is found experimentally to be more stable in the liquid phase by 30 ± 14 cm−1 (83 ± 40 cal mol−1). From the relative intensities, in the Raman spectra, of the CCl stretches measured as a function of temperature, the gauche conformer of the chloride molecules to be 167 ± 71 cm−1 (479 ± 203 cal mol−1) more stable than the trans conformer in the gas phase, and 73 ± 10 cm−1 (208 ± 29 cal mol−1) more stable in the liquid phase. The methyl torsions for the gauche and trans conformers of both molecules are tentatively assigned in the gas phase and the barriers have been calculated. The results of this study are compared with previous studies on these molecules.  相似文献   

6.
The Raman spectrum of amorphous biosynthetic human growth hormone, somatotropin, has been measured at high signal-to-noise ratios, using a CW argon ion laser and single channel detection. The rms signal-to-noise ratio varies from 1800:1 in the Amide I region near 1650 cm−1 region, to 500:1 in the disulfide stretch region near 500 cm−1.Component Raman bands have been extracted from the entire spectral envelope from 1800-400 cm−1, by an interactive process involving both partial deconvolution and band-fitting. Interconsistency of all bands has been achieved by multiple overlapping of adjacent regions that had been isolated for the band-fitting programs.The resulting areas of the Raman component bands have been interpreted to show the ratios of peptide conformations in the hormone: 64% α-helix, 24% β-sheet, 8% β-turns and 4% γ-turns. Analysis of the tyrosine region, usually described as a Fermi resonance doublet near ∼830–850 cm−1, shows four bands, at 825, 833, 853, and 859 cm−1 in this macromolecule. Integrated intensities of these bands (2:2:2:2) are interpreted to show that only half of the eight tyrosine residues function as hydrogen-bond bridges via the acceptance of protons.Both disulfide bridges fall within the frequency ranges for normal, unstressed SS bonds: The 511 and 529 cm−1 bands are indicative of the gauche-gauche-gauche and trans-gauche-gauche conformations, respectively.  相似文献   

7.
1064-nm-excited Fourier transform Raman spectra of bacteriochlorophyll-a (BChl) in various solid films and in chromatophores from a blue-green mutant of Rhodobacter sphaeroides have been obtained. The observed Raman spectra are free from high fluorescence backgrounds and sample degradation. The observed intensities seem to be enhanced because of a pre-resonant effect between the exciting radiation at 1064 nm and the Qy absorption at 770–870 nm of BChl. The spectral features are substantially different from the Soret and Qx resonance Raman spectra extensively investigated so far; several bands in the wavenumber region lower than 1200 cm−1 are particularly enhanced in the Qy pre-resonance Raman spectra. Bands due to both the C2O and C9O stretches appear at 1700–1620 cm−1, providing structural information on these carbonyl groups. In the CC stretching region (1620–1490 cm−1), the correlation between band positions and the co-ordination number of central magnesium, which was previously found in the Soret-excited Raman spectra, is preserved in the Qy, pre-resonance Raman spectra as well. The relative intensities of strong bands in the 1200–1000 cm−1 region appear to be useful for characterizing the BChl state. By using these advantages of the Qy, pre-resonance Raman spectra, molecular interactions and arrangements of BChl in hydrated films and in the B870 light-harvesting complex of R. sphaeroides are discussed.  相似文献   

8.
Near-infrared Fourier transform Raman and Fourier transform infrared spectroscopy have been used to investigate the chemical changes taking place during the curing reaction of several fatty acid methyl esters, which are used for modelling processes in the autoxidation of alkyd resin coatings. We have studied methyl oleate, methyl linoleate, and methyl linolenate in an attempt to monitor the degree of unsaturation within the fatty acid methyl esters (FAMES) during the complex autoxidation/polymerisation reaction that takes place once the paint system is coated onto a substrate and exposed to the atmosphere. The peaks around 1655 cm−1 have been assigned as follows: to the trans isomer at 1670 cm−1, the cis isomer at 1655 cm−1 and the conjugated structure at 1640 cm−1 [B. Schrader, Raman/Infrared Atlas of Organic Compounds (2nd Edn), VCH, Weinheim (1989); J. K. Abenyega, M. Claybourn and G. Ellis, in preparations]. Raman spectra for the cure of methyl linoleate after 24 h show several interesting features, suggesting the formation of a highly conjugated cyclic structure. Current theories about the mechanism for the autoxidation of methyl linoleate make no mention of this aromatic product.  相似文献   

9.
This research was done on hureaulite samples from the Cigana claim, a lithium bearing pegmatite with triphylite and spodumene. The mine is located in Conselheiro Pena, east of Minas Gerais. Chemical analysis was carried out by Electron Microprobe analysis and indicated a manganese rich phase with partial substitution of iron. The calculated chemical formula of the studied sample is: (Mn3.23, Fe1.04, Ca0.19, Mg0.13)(PO4)2.7(HPO4)2.6(OH)4.78. The Raman spectrum of hureaulite is dominated by an intense sharp band at 959 cm−1 assigned to PO stretching vibrations of HPO42− units. The Raman band at 989 cm−1 is assigned to the PO43− stretching vibration. Raman bands at 1007, 1024, 1047, and 1083 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations of HPO42− and PO43− units. A set of Raman bands at 531, 543, 564 and 582 cm−1 are assigned to the ν4 bending modes of the HPO42− and PO43− units. Raman bands observed at 414, and 455 cm−1 are attributed to the ν2 HPO42− and PO43− units. The intense A series of Raman and infrared bands in the OH stretching region are assigned to water stretching vibrations. Based upon the position of these bands hydrogen bond distances are calculated. Hydrogen bond distances are short indicating very strong hydrogen bonding in the hureaulite structure. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral hureaulite to be understood.  相似文献   

10.
The f.t.i.r. and Raman spectra of triphenylphosphine, triphenylarsine, triphenylstibine, and dibenzylsulphide in the solid state at ca 80 K have been recorded over the ranges 3500-40 cm−1 (infra-red, 1 cm−1 resolution) and 1650-30 cm−1 (Raman, 2 cm−1 resolution). The data, particularly those in the low wavenumber region, are more extensive, more complete, and of higher quality than those obtained in previous studies. Detailed band assignments are given.  相似文献   

11.
The Raman spectra of the kandite clay minerals, kaolinite, halloysite, dickite and nacrite, have been measured in the 180–3000 cm−1 region using Fourier transform near-IR Raman spectroscopy. These clays have a very small Raman cross-section and long data collection times were often required to obtain good spectra. Each clay has its own unique characteristic Raman spectrum which enables each kandite to be identified easily. In contrast, it is quite difficult to distinguish kandite clays by IR spectroscopy. Nacrite and dickite have relatively intense Raman peaks in the 1000–1100 cm−1 region, whereas kaolinite is characterized by an intense peak at 685 cm−1 and halloysite at 470 cm−1.  相似文献   

12.
The i.r. and Raman spectra (30–4000 cm−1) of 1-formyl-3-thiosemicarbazide (FTSC) and deuterated ftsc-d4, have been studied. Most of the vibration modes reveal pairs of bands and show strong temperature dependence. A band group {ν(NNH2)} at ∼ 1100 cm−1 exhibits well resolved doublet (1095 and 1112 cm−1) structure below 100 k. The intensity in the 11 12 cm−1 band decreases regularly (band disappears at 150 K) with the rise in temperature. Two new bands at 955 and 1070 cm−1 appear while measured above 400 K. The system eventually exists in several conformers in simultaneous equilibria. Moreover, a few bands {e.g. ν(CO), ν(CS) and ν(CH)} that show strong intensifies in i.r. exhibit weak (or zero) intensifies in the Raman and vice-versa. The features (characteristic of u and g vibration species) could be explained by a C2h pseudo symmetry space group proposed for the system. Both the FTSC and FTSC-d4 represent strong molecular associations. This favours the maximum abundance in the dimer stabilized conformers.  相似文献   

13.
The room temperature polarized Raman spectra of single crystal Li2SeO4 are assigned using a factor group analysis. The internal optic modes of the selenate ion are responsible for Raman bands from 920 to 440 cm−1, the translational optic modes of the lithium occur in the interval from 444 to 290 cm−1 and the external optic modes of the selenate ion are found between 210 and 70 cm−1. The symmetry-based assignments of these bands are discussed.  相似文献   

14.
Oriented poly(ethylene-2,6-naphthalate) (PEN) has been characterised by polarised FT-IR spectroscopy to determine the structural angles of the transition moments to the molecular chain axis. The bands at 1130 cm−1, 1142 cm−1 and 1602 cm−1, which have been previously assigned as having their transition dipole moments parallel to the chain axis, are confirmed as parallel bands. Bands at 767 cm−1 and 831 cm−1 are confirmed as perpendicular bands. However the band at 1708 cm−1 which has previously been assigned as a perpendicular band, is shown here to have its transition moment at 72° to the molecular axis.  相似文献   

15.
Raman spectrum of the meso tetraphenylporphine (TPP) deposited onto smooth copper surface as thin film were recorded in the region 200–1700 cm−1. To investigate the effect of meso-phenyl substitution rings on the vibrational spectrum of free base porphyrin, we calculated Raman and infrared (IR) spectra of the meso-tetraphenylporphine (TPP), meso tetramethylporphine (TMP), copper (II)porphine (CuPr) and free base porphine (FBP) at the B3LYP/6-311+G(d,p) level of the density functional theory (DFT). The observed Raman spectrum of the TPP is assigned based on the calculated its Raman spectrum in connection with the calculated spectra of the TMP, CuPr and FBP by taking into account of their corresponding vibrational motions of the Raman modes of frequencies. Results of the calculations clearly indicated that the meso tetraphenyl substitution rings are totally responsible for the observed Raman bands at ∼1593, 1234 and 1002 cm−1. The calculated and observed Raman spectra also suggested that the observed Raman band with a medium intense at 962 cm−1 might result from the surface plasmon effect. Furthermore, the observed Raman bands with medium intense at ∼334 and ∼201 cm−1 are as results of the dimerization or aggregation of the TPP or would be that related to intramolecular interaction. We also calculated IR spectra of these molecules at same level of the theory. To investigate the solvent effect on the vibrational spectrum of porphine, the Raman and IR spectra of the TPP and FBP are calculated in solution phase where water used as solvent. The results of these calculation indicated that there is no any significant effect on the vibrational spectrum of the TPP.  相似文献   

16.
We investigate the nature of bonding and charge states in (U1−yCey)O2 (y = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) by Raman spectroscopy. Raman spectrum of UO2 exhibits two prominent bands below 1000 cm−1, a F2g mode at 446 cm−1 and a F1u LO mode at 578 cm−1. As y is increased from 0 to 0.6, the F1u exhibits a large blue shift of 90 cm−1, and from y = 0.6 to 1.0, a red shift of 54 cm−1. We show that our results can be interpreted as arising from anisotropic compression/relaxation of the lattice under Ce substitution and this can give an indication of its charge states. Alternate interpretations have been given in the literature on the effect of substituents and dopants to the Raman spectra of UO2 and CeO2. The present interpretation of chemical stress effects can be taken as another plausible explanation.  相似文献   

17.
《Electroanalysis》2017,29(5):1481-1489
Polymorphs of Manganese di oxide (MnO2) such as alpha (α), beta (β), gamma (γ), epsilon (ϵ), and MnOOH type materials were prepared via hydrothermal approach under different conditions. The samples were characterized by XRD, FESEM, FT‐IR, Raman and BET analysis. Cyclic voltammetry (CV) analysis confirm that α ‐ MnO2 shows better electro‐catalytic ability. Amperometry sensing of hydrogen peroxide (H2O2) was carried out by varying applied potential value with the polymorphs of MnO2. Compared with the other phases of MnO2, α ‐ MnO2 shows high linear range up to 20μM. The calculated sensitivity value for H2O2 sensing of different phases is in the order of α ‐ MnO2, β ‐ MnO2, ϵ ‐ MnO2, γ ‐ MnO2, MnOOH and found to be 0.094 mA μM−1 cm−2 > 0.072 mA μM−1 cm−2 > 0.07 mA μM−1 cm−2 > 0.03 mA μM−1 cm−2 > 0.01 mA μM−1 cm−2 respectively. All the characterization results reveal that crystalline phase plays a vital role in electrochemical behavior rather than crystalline size, morphology, surface charge, surface area.  相似文献   

18.
《Vibrational Spectroscopy》2007,43(2):288-291
We report significant difference in the Raman spectra of two different kinds of CaB6 single crystals grown from boron purity 99.9% (3N) or 99.9999% (6N), respectively. Our Raman spectra of CaB6 (3N), which are similar to those of previous measurement [N. Ogita, S. Nagai, N. Okamoto, M. Udagawa, F. Iga, M. Sera, J. Akimitsu, S. Kunii, Phys. Rev. B 68 (2003) 224305], show peaks at 781.3 cm−1 (T2g), 1140.1 cm−1 (Eg), and 1283.5 cm−1 (A1g). The Eg mode shows a characteristic double-peak feature due to an additional weak broad peak centered at 1156.0 cm−1. However, the Raman spectra of CaB6 (6N) show sharp peaks at 772.5 cm−1 (T2g), 1137.9 cm−1 (Eg), and 1266.6 cm−1 (A1g). The peak frequencies are down shifted as much as 17 cm−1. In addition, no additional peak feature is observed for the Eg mode so that the mode is symmetric in the case of CaB6 (6N). The X-ray powder diffraction patterns for both CaB6 (3N) and CaB6 (6N) show that the lattice parameters are essentially the same. The majority of the impurity in the 99.9% (3N) boron is assessed to be C. Thus we prepared Ca(B0.995C0.005)6, CaB6 (6N) doped with C, and looked for the difference in the Raman spectra. The Raman spectra of Ca(B0.995C0.005)6 are nearly identical to those of CaB6 (6N), indicating that the difference in the Raman spectra of CaB6 (3N) and CaB6 (6N) is not due to C impurity. However, presence of impurity, even if small amount, seems to be enough to trigger local-structure changes to lower symmetry inducing the difference in Raman spectra of CaB6 (3N) and CaB6 (6N).  相似文献   

19.
《Chemical physics letters》1987,140(3):263-269
The 298 K. Raman and reflection spectra of the polydiacetylene THD, a close structural variant of DCHD, are presented. The polymer double- and triple-bond stretch frequencies are 1485 and 2111 cm−1, respectively, and the lowest electronic transition peaks at 17600 cm−1. The reflection spectrum is more reminiscent of the polydiacetylene TCDU than DCHD.  相似文献   

20.
Raman and i.r. spectra of tetramethylcyclobutane-1-one-3-thione (TMCBOT) and the fully deuterated derivative TMCBOT-d12 have been recorded. A fairly complete set of vibrational frequencies and assignments are given for the two molecules. The CO stretching mode was observed as a very strong Fermi doublet in the infrared spectrum of TMCBOT at 1811/1782 cm−1. For TMCBOT-d12 a similar doublet was observed at 1808/1775 cm−1. The CS stretching mode was assigned to bands at 1303 cm−1 for TMCBOT and 1307 cm−1 for the deuterated molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号