首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review is focused on the emerging chemistry of nonbenzenoid aromatic isocyanides, a relatively new family of aryl isocyanide molecules. Two types of systems are discussed: (1) isocyanoazulenes, for which five archetypal isomeric structures may be envisioned, and (2) η5-stabilized isocyanocyclopentadienides. So far, the latter are represented by isocyanoferrocene, 1,1′-diisocyanoferrocene, and isocyanocymantrene. In addition, the synthesis and chemistry of the linear 2,6-diisocyanoazulene motif, including regioselective installation and complexation of its –NC termini with controlled orientation of the azulenic dipole, are described. Self-assembly of nonbenzenoid aryl isocyanides and diisocyanides on gold(1 1 1) surfaces is reviewed as well.  相似文献   

2.
In this paper, we have reported a new method of preparing self-assembled monolayers (SAMs) of decanethiol and hexadecanethiol on gold surface by using a lyotropic liquid crystalline phase as an adsorbing medium. The stability and blocking ability of these SAMs were characterized using grazing angle Fourier transform infrared (FTIR) spectroscopy and electrochemical techniques such as cyclic voltammetry and electrochemical impedance spectroscopy. The lyotropic liquid crystalline medium possesses a hexagonal structure consisting of a nonionic surfactant Triton X-100, water, and the corresponding thiol, which provides a highly hydrophobic environment to solubilize the alkanethiols and later to facilitate their delivery to the gold surface. We find that the SAMs formed from the hexagonal liquid crystalline phase are highly compact and have excellent electrochemical blocking ability towards the redox probes compared to conventional SAMs prepared from commonly used organic solvents such as ethanol. From the impedance studies, we have determined the capacitance of the monolayer-coated electrodes and the surface coverage of the SAM, which has been found to be >99.98% on gold surface. We have also estimated the extent of ionic permeability through the film and measured the rate constants for the redox reactions on the SAM-modified electrodes. Our results show that the rate constants of [Fe(CN)6](3-/4-) and [Ru(NH3)6](2+/3+) redox couples are very much lower in the case of monolayers prepared in liquid crystalline phase compared to the SAM formed in 1 mM thiol in ethanol solution, suggesting a better blocking ability of the SAMs in the former case. From the grazing angle FTIR spectroscopic studies and capacitance measurements, we have ruled out any coadsorption of surfactant molecules on the Au surface. These results suggest that SAMs of very low defect density and extremely low ionic permeability can be obtained when a hexagonal lyotropic liquid crystalline phase is used as an adsorbing medium.  相似文献   

3.
Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, photoemission spectroscopy (PES), and contact angle measurements have been used to examine the structure and bonding of self-assembled monolayers (SAMs) prepared on Au(111) from the positional isomers of mercaptobenzoic acid (MBA). The isomer of MBA and solvent chosen in SAM preparation has considerable bearing upon film morphology. Carbon K-edge NEXAFS measurements indicate that the monomers of 2-, 3-, and 4-MBA have well-defined orientations within their respective SAMs. Monomers of 3- and 4-MBA assume an upright orientation on the Au substrates in monolayers prepared using an acetic acid in ethanol solvent. The aryl ring and carboxyl group of these molecules are tilted from the surface normal by a colatitudal angle of approximately 30 degrees . Preparation of 4-MBA SAMs using pure ethanol solvent, a more traditional means of synthesis, had no appreciable effect upon the monomer orientation. Nonetheless, S(2p) PES measurements illustrate that it results in extensive bilayer formation via carboxyl group hydrogen-bonding between 4-MBA monomers. In 2-MBA monolayers prepared using acetic acid/ethanol solvent, the monomers adopt a more prostrate orientation on the Au substrates, in which the aryl ring and carboxyl group of the molecules are tilted approximately 50 degrees from the surface normal. This configuration is consistent with an interaction between both the mercaptan sulfur and carboxyl group of 2-MBA with the underlying substrate. S(2p) and C(1s) PES experiments provide supporting evidence for a bidentate interaction between 2-MBA and Au(111).  相似文献   

4.
The adsorption and self-assembly of isocyanide derivatives on Au(111) surface were investigated by density functional theory (DFF) and molecular dynamics simulation. The calculation for phenyl isocyanide by DFT was based on cluster and slab models. The self-assembled monolayers of 2-isocyanoazulene and 1,3-diethoxycarbony 1- 2-isocyanoazulene on Au(111) were simulated using Au-C force field parameters developed by us. It was found that the top site was the most preferred position, and the isocyanoazulene and its derivatives could form the ordered face to edge self-assembled monolayer on gold surface indeed, and the molecules stood on the gold surface vertically.  相似文献   

5.
末端碳链长度对偶氮苯自组装膜结构的影响   总被引:4,自引:0,他引:4  
The end-group dominated molecular orientation in the azobenzene self-assembled monolayers (SAMs), CnAzoC2SH (n=1-4), on gold was evaluated for the first time by grazing incidence reflection absorption FTIR spectroscopy (RA-FTIR). All these azobenzene SAMs have highly-organized and closely-parked structures, with the molecule tilting away gradually from surface normal direction with the increase of end group alkyl length.  相似文献   

6.
Self-assembled monolayers (SAMs) have become a standard tool for exploring surface interactions. Although well characterized, SAMs are known to undergo structural and conformational changes in the presence of solution, yet the ability to quantify these changes remains an obstacle due to limited analytical techniques. In this study, we determine changes in structure and conformation of CH3, OH, and COOH terminated hexadecanethiols on gold in water by means of a new technique known as evanescence reflection spectroscopy. This FTIR application, in conjunction with a semiempirical formalism, is capable of providing both qualitative and quantitative understanding of the molecular structure and orientation at the solid/liquid interface.  相似文献   

7.
Ordered, tightly packed aryl-azide-terminated, self-assembled monolayers (SAMs) were created on gold substrates from a new disulfide precursor. These monolayers were reduced at least partially in an aqueous environment using approximately 2 nm CdS quantum dots (Qdots) as photocatalysts to give mixed monolayers of arylamine- and aryl azide-terminated species. The CdS photocatalysts were made available for the reaction by exposure of the azide-terminated SAM to Qdots initially in solution or by preadsorption of the CdS nanoparticles on the SAM. In either case, X-ray photoelectron spectroscopy (XPS), grazing angle Fourier transform infrared spectroscopy (FTIR), and contact angle measurements were used to show the occurrence of the photocatalytic reduction. As further evidence for the presence of arylamine-terminated thiolate in the reduced SAM, these arylamine groups were successfully tagged with fluorescein isothiocyanate (FITC). The use of Qdot photocatalysts to functionalize surfaces may lead to a means to pattern surfaces at the nanoscale.  相似文献   

8.
A simple, fast, and low-compound-consuming procedure based on the air-liquid interface-assisted method for preparing self-assembled monolayers (SAMs) of organic molecules with phosphonic acid head groups on the native oxide surface of silicon was demonstrated. The SAMs thus prepared were characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM). This approach enabled the fabrication of ordered SAMs in a large-area substrate.  相似文献   

9.
This article describes the preparation of pH-responsive self-assembled monolayers (SAMs) of acylated anthranilate-terminated alkanethiol. These monolayers are formed by chemisorption of the alkanethiol molecules onto a gold surface, resulting in different wetting properties of the surfaces depending upon the pH. By using various characterization techniques (e.g., infrared spectroscopy, cyclic voltammetry, contact angle measurements, and surface energy analysis), we have found that the changes in the wetting properties originate from the different surface structures of the monolayers in different pH environments. From surface energy analysis, we found that the disperse components of the surface energy on such SAMs predominate after treatment with pH 1 water, whereas the polar components of the surface energy on such SAMs predominate after treatment with pH 13 water. It is greatly anticipated that this line of research will provide new insight into the mechanism behind pH-responsive properties, facilitating the design and synthesis of new surface-active molecules for the fabrication of pH-responsive functional surfaces.  相似文献   

10.
Lipase catalyzed esterification of therapeutic drugs to functional self-assembled monolayers (SAMs) on 316L stainless steel (SS) after assembly has been demonstrated. SAMs of 16-mercaptohexadecanoic acid (-COOH SAM) and 11-mercapto-1-undecanol (-OH SAM) were formed on 316L SS, and lipase catalysis was used to attach therapeutic drugs, perphenazine and ibuprofen, respectively, on these SAMs. The reaction was carried out in toluene at 60 degrees C for 5 h using Novozyme-435 as the biocatalyst. The FTIR spectra after surface modification of -OH SAMs showed the presence of the C=O stretching bands at 1745 cm(-1), which was absent in the FTIR spectra of -OH SAMs. Similarly, the FTIR spectra after the reaction of the -COOH SAM with perphenazine showed two peaks in the carbonyl region, a peak at 1764 cm(-1), which is the representative peak for the C=O stretching for esters. The second peak at 1681 cm(-1) is assigned to the C=O stretching of the remaining unreacted terminal COOH. XPS spectra after lipase catalysis with ibuprofen showed a photoelectron peak evolving at 288.5 eV which arises from the carbon (C=O) of the carboxylic acid of the drug (ibuprofen). Similarly for -COOH SAMs, after esterifiation we see a small, photoelectron peak evolving at 286.5 eV which corresponds to the C in the methylene groups adjacent to the oxygen (C-O), which should evolve only after the esterification of perphenazine with the -COOH SAM. Thus, lipase catalysis provides an alternate synthetic methodology for surface modification of functional SAMs after assembly.  相似文献   

11.
Nitrofluoren-9-one and nitrofluoren-9-dicyanomethylene electron acceptors 7, 8, and 11 functionalized with a terminal thioctic acid unit have been synthesized from 2,4,5,7-tetranitrofluorenone. The self-assembled monolayers (SAMs) of these compounds on gold, formed via gold-sulfur interaction, have been fully characterized by electrochemical, FTIR, ellipsometry, and contact angle measurements. Cyclic voltammetry of SAMs reveals two reversible single-electron reduction waves for fluorenone derivatives 7a,b and 11, and three single-electron reductions for the dicyanomethylene-fluorene 8b, providing the first observation of a radical trianion species in SAMs. The tendency of the thioctic anchor to form multilayers via disulfide links is noted.  相似文献   

12.
The photophysics of fully and partially covered self-assembled monolayers (SAMs) of a quinquethiophene (5T) derivative have been investigated. The monolayers behave as H-aggregates. The fluorescence of fully covered SAMs is weak and red-shifted, and the extinction is blue-shifted as compared to that of single molecules. The fluorescence of partially covered SAMs is dominated by that of single molecules on the surface. The extinction spectra are similar for fully and partially covered monolayers, which show that even the smallest islands are H-aggregates. The extinction spectra furthermore closely resemble those for 5T single crystals, which demonstrates that in oligothiophene crystals the intermolecular interactions within one layer molecules are stronger than the interlayer electronic coupling.  相似文献   

13.
自组装单分子膜及其表征方法   总被引:3,自引:0,他引:3  
自组装单分子膜的研究是近年来十分活跃的研究领域. 随着膜的应用领域的拓展 ,对膜的表征方法不断提出新的要求.本文综述了自组装单分子膜体系的类型和基底表面的 处理方法,着重从电化学、谱学、显微学以及表面润湿性等方面综述了近几年来自组装单分子膜的表征方法研究进展, 并对其发展前景作了展望.  相似文献   

14.
We report on the electrochemical behaviour and electropolymerization of self‐assembled monolayers (SAMs) of methylene blue (MB) on gold electrodes. The SAMs of MB on gold electrodes were prepared by immersing the substrates into a solution of 1.0 mM MB in absolute ethanol for different times at room temperature. Cyclic voltammetry experiments exhibited that reductive desorption of MB monolayer takes place at three different potentials on polycrystalline gold electrodes, while reductive desorption of MB monolayer consists of only one peak on single crystal Au(111) substrates. Calculated charge densities for different immersion times indicated that optimal immersion time for self‐assembly of MB is 96 h. Electropolymerization of SAMs of MB on gold electrode was achieved by applying 0.95 V for 1 s in 0.1 M borate buffer solution (pH: 9.0). It was observed that poly(MB) monolayers are highly stable in acidic media. ATR‐FTIR and UV‐vis spectra exhibited differences between monomer and polymer monolayers, which are attributed to surface‐confined electropolymerization. STM image of poly(MB) monolayer on Au(111) substrate revealed a surface that is covered by well‐ordered, collateral nanowires with an average size of 3 nm.  相似文献   

15.
Two new polychlorotriphenylmethyl (PTM) derivatives bearing a thioacetate and a disulfide group have been synthesized to anchor on gold substrate. On the basis of these molecules, three strategies were followed to prepare self-assembled monolayers (SAMs) of electroactive PTMs. The resulting SAMs were fully characterized by contact angle, atomic force microscopy (AFM), and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The high coverage surface and stability of the SAMs were demonstrated by cyclic voltammetry. In addition, the electrochemical experiments proved that these SAMs are bistable since it is possible to reversibly switch between the PTM radical state to the corresponding anion. The magnetic response was investigated by electron paramagnetic resonance. We observed that when the PTM SAMs are in their radical form they confer magnetic functionality to the surface, whereas when they are in the anionic state, the surface is diamagnetic. Thus, the PTM-modified substrates are multifunctional surfaces since they combine magnetic and electroactive properties. The reported results show the high potential of these materials for the fabrication of surface molecular devices.  相似文献   

16.
Fluorescent sensor array in a microfluidic chip   总被引:1,自引:0,他引:1  
Miniaturization and automation are highly important issues for the development of high-throughput processes. The area of micro total analysis systems (muTAS) is growing rapidly and the design of new schemes which are suitable for miniaturized analytical devices is of great importance. In this paper we report the immobilization of self-assembled monolayers (SAMs) with metal ion sensing properties, on the walls of glass microchannels. The parallel combinatorial synthesis of sensing SAMs in individually addressable microchannels towards the generation of optical sensor arrays and sensing chips has been developed. [figure: see text] The advantages of microfluidic devices, surface chemistry, parallel synthesis, and combinatorial approaches have been merged to integrate a fluorescent chemical sensor array in a microfluidic chip. Specifically, five different fluorescent self-assembled monolayers have been created on the internal walls of glass microchannels confined in a microfluidic chip.  相似文献   

17.
Poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) are extensively used to modify substrates to prevent nonspecific protein adsorption and to increase hydrophilicity. X-ray photoelectron spectroscopy analysis, complemented by water contact angle measurements, is employed to investigate the formation and stability upon aging and heating of PEG monolayers formed on gold and silicon nitride substrates. In particular, thiolated PEG monolayers on gold, with and without the addition of an undecylic spacer chain, and PEG monolayers formed with oxysilane precursors on silicon nitride have been probed. It is found that PEG-thiol SAMs are degraded after less than two weeks of exposure to air and when heated at temperatures as low as 120 degrees C. On the contrary, PEG-silane SAMs are stable for more than two weeks, and fewer molecules are desorbed even after two months of aging, compared to those desorbed in two weeks from the PEG-thiol SAMs. A strongly bound hydration layer is found on PEG-silane SAMs aged for two months. Heating PEG-silane SAMs to temperatures as high as 160 degrees C improves the quality of the monolayer, desorbing weakly bound contaminants. The differences in stability between PEG-thiol SAMs and PEG-silane SAMs are ascribed to the different types of bonding to the surface and to the fact that the thiol-Au bond can be easily oxidized, thus causing desorption of PEG molecules from the surface.  相似文献   

18.
The stability of self-assembled monolayers (SAMs) and multilayers formed on silicon surface by amino-terminated silanes and SAMs formed by alkyl and glycidyl terminated silanes were investigated in vitro with saline solution at 37 degrees C for up to 10 days. FTIR and XPS results indicated that amino-terminated SAMs and multilayers are very unstable if the alkyl chain is short ((CH2)3), while stable if the alkyl chain is long ((CH2)11). On the other hand, alkyl-terminated SAMs are very stable regardless of the alkyl chain length, and glycidyl terminated SAM retained approximately 77% of the organosilane molecules after 10 days. Hydrogen bonding between the organosilane monomer and silicon surface and among the organosilane monomers is believed to contribute to the instability of the SAM and multilayer formed by amino-terminated silane with a short alkyl chain ((CH2)3). Therefore, the widely used (3-aminopropyl) trimethoxysilane (APTMS) SAM and multilayer may not be suitable for implantable biomedical applications.  相似文献   

19.
Four approaches have been explored for the preparation of maleimido-functionalized self-assembled monolayers (SAMs) on silicon. SAMs prepared by self-assembly of maleimido-functionalized alkyltrichlorosilanes (11-maleimido-undecyl-trichlorosilane) on oxide-covered silicon yield higher signals from maleimido functionalities in ATR-IR (attenuated total reflection IR) spectroscopy and XPS (X-ray photoelectron spectroscopy) than the other three methods. The surface composition of maleimido groups was tailored further by the formation of mixed monolayers with nonfunctionalized alkyltrichlorosilanes (decyltrichlorosilane). The order of the alkyl chains within the monolayers only slightly depends on the composition of the mixed monolayers. We utilized the maleimido-terminated SAMs to bind various nucleophilic compounds, alkylamines, alkylthiols, and thiol-tagged DNA oligonucleotides by means of conjugate addition.  相似文献   

20.
Adlayers were formed on self-assembled monolayers (SAMs) formed by alkanethiols on gold. Base SAMs exposing amide functional groups at the SAM surface were formed with 12-mercaptododecanamide. Adlayers of diacetylene-containing monomers were then formed via amide hydrogen bonding in decalin and decalin/toluene mixtures. Grazing angle FTIR, contact angle measurements, and ellipsometry suggest that these adlayer films exhibit ordering and packing similar to that of SAMs on gold. Resonance Raman spectroscopy showed that these diacetylene adlayers could be readily polymerized by exposure to UV light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号