首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
小行星撞击地球的超高速问题   总被引:1,自引:0,他引:1  
小行星撞击地球是人类生存面临的潜在威胁之一.在小行星进入地球大气与撞击地球表面过程中,存在烧蚀、解体、空中爆炸、火球、撞击成坑、反溅碎片云、地震以及海啸等一系列复杂的物理化学和力学现象.本文梳理和归纳了与这些现象相关的超高速空气动力学问题和超高速碰撞动力学问题.小行星进入地球大气的超高速空气动力学问题有:极高速($V = 12 ~ 20$km/s)进入条件下的气动力与轨迹,极高速进入条件下的小行星气动加热与烧蚀机理,极高速气动加热条件下的小行星结构传热与热响应,极高速进入条件下的高温气体效应,小行星进入过程的物理特征.小行星撞击地球的超高速碰撞动力学问题有:陆地撞击成坑与反溅碎片云,海洋撞击与海啸,撞击过程的地震效应.由于小行星撞击地球与超高速飞行器的再入过程在速度、材料和结构上存在较大差异,针对这些超高速问题,现有的研究手段在地面试验和数值计算两方面都存在不足.最后,从小行星进入地球大气的弹道方程、质量损失方程、解体判据和解体模型等出发,初步建立了小行星进入与撞击效应分析评估模型,并对Chelyabinsk和Tunguska两次流星事件进行了分析,重构了进入与爆炸解体过程,评估了空爆火球在地面所导致的超压和热辐射损伤.   相似文献   

2.
弹丸高速撞击压力容器损伤实验研究   总被引:1,自引:0,他引:1  
张伟  管公顺  哈跃  庞宝君 《实验力学》2004,19(2):229-235
微流星体及空间碎片的高速撞击威胁着航天器的安全运行。而压力容器是航天器上受微流星体及空间碎片撞击威胁最大的关键部件之一。对压力容器的高速撞击能导致其发生破裂而过早终止航天器的使命。本文的目的是通过实验研究,确定高速撞击条件下压力容器发生具有撕裂的简单穿孔和裂纹失稳破裂的界限。实验样件选择6063铝合金管焊接制成。高速撞击实验采用铝柱状弹丸和球形弹丸在3km/s左右的速度下正撞击铝压力容器,铝压力容器的压力从0~30Bar变化来探索获得不同损伤形式的压力条件。给出了铝压力容器前、后壁从穿孔到裂纹失稳破裂的实验结果。未防护充水铝压力容器的主要损伤是其前壁的裂纹失稳破裂。而防护充水铝压力容器在前璧未穿孔时未发生破裂。未防护充气压力容器在给定的实验条件下前璧未发生破裂而后璧发生破裂。防护充气压力容器在小防护间距时前璧发生破裂。  相似文献   

3.
低地球轨道上的航天器易受到微流星体和空间碎片的超高速撞击,导致其严重损伤甚至灾难性的失效。撞击损伤特性研究是航天器防护设计的重要问题。本文采用非火药驱动二级轻气炮发射球形弹丸,对铝双层板结构进行超高速撞击实验研究,从而模拟空间碎片对航天器防护结构的超高速撞击作用。实验得到了铝双层板结构在弹丸撞击速度为2.33±0.12km/s和4.36±0.10km/s两种情况时,其前板和后板的撞击损伤随前板厚度变化的规律,随着前板厚度的增加,前板穿孔直径增大,后板撞击中心的损伤减轻,后板上大弹坑由撞击中心移至外围。当撞击速度超过弹丸破碎速度时,后板上将出现弹坑密集分布区。实验结果表明,前板厚度的选取对双层板结构的撞击损伤区域会产生影响。  相似文献   

4.
针对铝合金靶板受冰弹丸超高速撞击时所产生的类8字形和类椭圆形损伤形貌,采用试验与理论分析相结合的方法,利用弹性力学理论对损伤形貌的生成机理进行分析研究。以靶板撞击点为原点建立力学模型,分析在弹丸撞击靶板瞬间,靶板撞击点处各方向上的应力分布情况。分析结果表明:在靶板撞击点处各方向上的应力分布不均匀,呈类8字形分布;当撞击产生的应力超过材料的屈服极限后材料开始塑性变形,从而导致靶板产生类8字形的鼓包;当撞击产生的应力超过材料的断裂极限后材料开始撕裂,撕裂后的损伤区域总体上呈现类椭圆形。这说明靶板撞击区的类8字形和类椭圆形损伤形貌是由材料的弹性效应导致的。  相似文献   

5.
防护屏穿孔直径在Whipple防护结构的超高速撞击实验中易于测量,是检验超高速撞击实验及数值模拟有效性的重要参数.本文分别采用超高速撞击实验、数值模拟及经验公式对铝合金Whipple防护结构的防护屏穿孔进行了研究.数值模拟结果与实验结果吻合很好,说明本文物理建模及参数的选取是合理的,同时也验证了数值模拟方法的正确性及有效性;使用经验公式进行了对比计算,结果表明Maiden C J给出的公式具有很好的普适性.最后利用数值模拟研究不同材料对超高速撞击防护屏穿孔的影响.合理的应用经验公式及数值模拟可以更加快捷、有效地开展超高速撞击实验研究.  相似文献   

6.
超高速撞击问题中,靶体损伤区研究能够弥补部分实验中难以精确获取成坑形貌的问题,为撞击机理研究和数值模拟的校验提供重要依据.损伤区的数值模拟研究开展较少,主要原因是缺乏经过实验验证的损伤区判据.本文总结了已有的损伤区定量测量实验结果,发现对于同一种靶体,多种切片显微测试方法得到的损伤区深度比较吻合,这给损伤区分析提供了便利.基于iSALE程序模拟分析了累计塑性应变、损伤因子和峰值压力作为损伤区判断参数的适用性,认为TPS=0.1适合作为损伤判据;D=1可以作为损伤判据,但误差较大需谨慎使用;峰值压力不适合作为损伤判据.通过参数化分析发现,随着孔隙率增大和靶体强度增大,损伤区深度逐渐减小.  相似文献   

7.
廖祜明  黎波  樊江  焦立新  于帅超  林健宇  裴晓阳 《爆炸与冲击》2022,42(10):103301-1-103301-11

空间碎片超高速撞击是典型的高温、高压、高应变率的极限力学问题,涉及材料复杂的动态响应,对传统的数值方法提出了巨大挑战。最优运输无网格(OTM)方法通过有机结合最优运输时间积分理论、局部最大熵无网格近似、物质点抽样、基于物理的裂纹扩展算法以及大规模并行计算策略,克服了传统数值方法瓶颈,在理论上保证了不同形式能量耗散的自主耦合分配,为超高速撞击仿真预测提供了高效的解决方案。采用基于OTM方法自主研发的极限力学仿真软件ESCAAS,对不同质量(3、10 g)的铜飞片以不同撞击角度(5.4°、11.7°)和不同撞击速度(5.55、5.12 km/s)撞击铝合金靶板的过程进行数值模拟,获得碎片云的形貌、靶板穿孔孔径等结果,与实验测量数据吻合良好,显示出OTM方法及ESCAAS软件可以作为超高速撞击的有力数值分析手段。

  相似文献   

8.
武强  张庆明  龚自正  任思远  刘海 《爆炸与冲击》2021,41(2):021406-1-021406-9
以二级轻气炮作为加载手段,针对以PTFE/Al活性材料为防护屏的Whipple防护结构,开展不同弹丸尺寸、不同碰撞速度的超高速撞击实验。利用激光阴影照相设备,获得并分析了碎片云特性;通过回收的防护结构靶板,研究了活性材料防护结构超高速撞击条件下的后板损伤特性;通过与经典Christiansen撞击极限方程对比,获得活性材料Whipple结构防护性能,并拟合得到新型防护结构的撞击极限曲线。结果表明,相较于同面密度铝合金材料,活性材料超高速撞击条件下的冲击起爆反应使得碎片云中具有侵彻能力的碎片大幅减少,从而显著提升航天器的防护能力,撞击速度为2.31 km/s时最大可提升45%。  相似文献   

9.
超高速撞击数值仿真结果分析   总被引:11,自引:0,他引:11  
为了分析超高速撞击过程的宏观现象和内在机理,对9.53 mm铝球以6.64 km/s的速度撞击2.2 mm厚的铝靶的SPH仿真结果进行了量化分析。结果表明:采用SPH方法以及Steinberg弹塑性模型和Mie-Grneisen状态方程,可获得与试验相符的仿真结果;球形破片开坑或穿孔直径遵循初始快速增加、然后缓慢增加,直至稳定的变化规律;破片/靶板界面的最大撞击压力比材料强度大两个量级以上;靶板阻抗力最大值发生在破片最大直径侵入靶板时刻;碎片云的运动过程具有自相似演化特征,其运动范围不会超出碎片云的包络圆锥范围。  相似文献   

10.
概述了超高速撞击动力学的国内外研究背景;从超高速撞击厚板成坑、中厚板侵彻、薄板形成碎片 云、模拟实验技术和数值模拟技术5个方面总结了超高速撞击动力学的研究进展情况;分析 了超高速撞击对航天器的毁伤效应;给出了航天器的防护要求;讨论了航天器防护结构的方 案设计和性能表征. 为超高速撞击动力学和航天器防护研究提供技术参考.  相似文献   

11.
张山豹  孔祥振  方秦  洪建 《爆炸与冲击》2022,42(1):013302-1-013302-13
为探究超高速动能武器的对地破坏效应及其影响因素,采用数值模拟方法对弹体超高速侵彻的地冲击规律进行了研究。首先,基于石灰岩静动态力学性能实验数据对材料模型参数进行了标定,并对已有弹体大范围着速侵彻石灰岩靶体进行了模拟,验证了所采用材料模型和数值模拟方法的合理性。随后,开展了钨合金长杆弹超高速侵彻石灰岩靶体的数值模拟,细致分析了地冲击传播的现象和机理:弹体超高速侵彻靶体时,弹靶交界面处会产生瞬时高压,并以应力波的形式在靶体中传播,对靶体内部造成破坏,且当弹体初速度高于3.0 km/s时,地冲击显著增强。最后,进一步研究了不同弹靶参数对地冲击的影响,发现从相对深度来看,弹体参数(弹体长径比、密度)对地冲击规律影响不大;而靶体特征特别是孔隙率对地冲击传播具有较大影响。  相似文献   

12.
为探索钨合金柱形弹超高速撞击水泥砂浆靶的侵彻深度随撞击速度变化规律,利用二级轻气炮开展了?3.45 mm×10.5 mm的克级93 W钨合金柱形弹以1.82~3.66 km/s的速度撞击水泥砂浆靶的实验,利用CT图像诊断技术获得了侵彻深度和残余弹长随撞击速度的变化规律,对超高速撞击过程进行了数值模拟,结合数值模拟结果进一步分析了超高速撞击物理过程。结果表明:(1)超高速撞击条件下成坑是弹坑+弹洞型;(2)侵深-速度曲线呈现先增大后减小的现象,在弹速2.6 km/s附近存在侵彻深度极大值,约为8.5倍弹长,相对于中低速侵彻的深度并没有显著优势。(3)通过基于数值模拟得到的弹靶界面压力时程曲线将侵彻过程分为4个阶段,其中准定常侵彻阶段和第三侵彻阶段是决定总侵深的主要阶段。(4)随撞击速度增加,弹体侵蚀逐渐剧烈,此时准定常侵彻阶段的侵深变化不大,而第三侵彻阶段中的刚体侵彻部分大幅降低,导致总侵深大幅降低,使总侵深曲线呈现先增大后减小的现象。  相似文献   

13.
多跨薄壁压力管道侧向冲击破坏的实验研究   总被引:4,自引:0,他引:4  
对三跨连续压力管道侧向受平头、半球头及锥头弹体冲击破坏进行了实验研究,获得了不同工况下的临界破坏速度及相应的破坏模式,实验过程中测量并记录了薄壁圆管的变形、冲击力时程曲线及内充液体的压力变化。实验结果表明,内充介质的存在极大地降低了临界破坏速度,同时临界破坏速度随内充介质压力的增加而减小。  相似文献   

14.
为研究高速破片(钨球)撞击充液容器(贯穿前后壁面)时容器壁面的毁伤情况,利用ANSYS/LSDYNA对该过程进行了数值模拟,分析了破片撞击动能对充液容器前后壁面毁伤程度的影响,并进行实验验证。结果表明:高速破片撞击充液容器形成的液压水锤对充液容器前后壁面的破坏程度可分为3个等级,即前后壁面均未出现裂纹、前壁面没有出现裂纹后壁面出现裂纹和前后壁面均出现裂纹且后壁面呈花瓣式开裂;破片撞击充液容器过程中,前后壁面的最大变形量和前后壁面的裂纹总数随破片撞击动能的增加而增大。  相似文献   

15.
周刚  李名锐  文鹤鸣  钱秉文  索涛  陈春林  马坤  冯娜 《爆炸与冲击》2021,41(2):021407-1-021407-14
为研究钨合金弹体超高速侵彻混凝土靶的相关机理,构建了适用于超高速撞击的金属强度模型、失效模型和混凝土的本构模型,对93钨合金弹体超高速撞击混凝土靶问题进行了数值模拟。开展了钨合金弹体超高速撞击混凝土靶实验,分析了靶板成坑特性,研究了侵彻总深度和残余弹体长度随撞击速度的变化规律,理论分析了长杆钨弹超高速撞击混凝土的侵彻模型和混凝土靶内的应力波传播。得到以下主要结论:(1)利用金属及混凝土的新本构模型获得的超高速撞击混凝土靶的破坏形貌数值模拟结果与实验结果一致;(2)超高速撞击条件下混凝土靶成坑为“弹坑+弹洞”形,成坑体积与弹体动能近似成正比;(3)超高速撞击条件下,侵彻深度随弹速提高呈现先增大后减小的现象,高速段侵深降低是弹体经历销蚀侵彻后“刚体侵彻阶段”减少造成的;(4)建立的钨合金超高速撞击混凝土侵彻分析模型,可用来预估侵彻深度、残余弹长、蘑菇头直径等参数;(5)采用建立的超高速撞击混凝土靶内应力波传播理论模型得到的计算结果与实验结果吻合较好。  相似文献   

16.

引入颗粒动力学理论(拟流体模型)建立了适用于超高速碰撞的SPH新方法。将超高速碰撞中处于损伤状态的碎片等效为拟流体,在描述其运动过程中引入了碎片间相互作用和气体相对碎片的作用。采用该方法对球形弹丸超高速碰撞薄板形成碎片云的过程进行了数值模拟,得到了弹坑直径、外泡碎片云和内核碎片云的形状、分布,并与使用传统SPH方法、自适应光滑粒子流体动力学(ASPH)方法的模拟结果进行对比,结果显示:新方法在内核碎片云形状和分布上计算结果更加准确。同时对Whipple屏超高速碰撞问题进行了研究,分析了不同撞击速度下防护屏弹坑尺寸及舱壁损伤特性等特性,计算结果与实验吻合较好且符合Whipple防护结构的典型撞击极限曲线。

  相似文献   

17.
在爆炸容器中进行小药量空中爆炸实验, 利用传感器序列测量冲击波速度, 根据冲击波Rankine-Hugoniot关系获得测点近似理论峰值压力, 从而实现压力传感器的标定, 获得的灵敏度相对误差较小。同时测量了相应的冲击波参数, 并利用Modified-Friedlander公式进行数据后处理, 结果表明固定超压拟合更接近物理事实, 固定正相时间拟合也具有较高精度。最后进行了误差分析, 发现不同传感器特性及数据后处理方法都会带来一定误差。实验结果表明这种测量和后处理方法具有较高的精度, 可以同时标定传感器和测量冲击波参数。  相似文献   

18.

准静态压力是爆炸容器设计的重要参考数据。在球形爆炸容器内开展了爆炸加载实验,压力传感器采用齐平和导孔两种安装方式,均获得了准静态压力数据,且两组数据一致。理论推导了准静态压力的表达式,并通过拟合实测数据得到经验公式。研究结果表明:(1)爆炸冲击波在容器内部往返3次后,容器内气体压力进入准静态;(2)准静态压力与当量容积比近似呈正比例关系,比例系数为1.10 MPa·m3/kg TNT。

  相似文献   

19.
储氢高压容器中的氢通过渗透会进入容器钢壁并在钢壁中扩散,最终透过容器外表面进入容器存放环境中.在容器钢壁中的氢会引起材料力学性能变化,从而引起容器承载能力变化.要认识这些变化,首先就要了解氢在钢壁中的渗透、扩散规律和浓度的瞬态分布规律.针对球形高压容器外表面满足一般传质边界条件的情况,建立求解容器壁中氢浓度的解析理论模型,导出了容器壁中瞬态氢浓度和渗透到环境中的氢累积量的理论公式.通过解析计算,给出了器壁中氢浓度和氢在环境中的累积渗透量随时间的变化曲线,分析了相应的变化规律.这些公式和规律性认识为后续的容器壁材料力学性能分析和容器承载能力评估提供了前提.  相似文献   

20.
为了诊断超高速碰撞过程中产生等离子体的电子温度,进而研究不同碰撞速度、相同入射角度(弹道与靶板平面的夹角)下超高速碰撞产生瞬态等离子体在整个物理过程的电子温度随时间的演化规律,设计了适用于瞬态等离子体诊断的扫描Langmuir探针诊断系统。通过二级轻气炮加载LY12球形铝弹丸,运用设计的扫描Langmuir探针诊断系统分别进行了入射角度为30、不同碰撞速度下碰撞LY12铝靶产生等离子体的实验诊断。获得了整个物理过程在给定探针位置处等离子体的电子温度与碰撞速度的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号