首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

Stationary phases which have great affinity for Na+ were synthesized by incorporating 12-crown-4 polymer on silica gel for liquid chromatography of alkali and alkaline-earth metal ions. The stationary phases interact with Na+ most strongly of all alkali metal ions as expected, and the retention times on liquid chromatography of alkali metal ions were in the sequence Li+ < Cs+ < Rb+ < K+ < Na+. On the stationary phase, a mixture of Li+, Na+, and K+ can be separated completely by the elution with water/methanol mixture. By the use of spherical type silica gel instead of irregular type one and by effective end-capping of the residual silanol groups, the peak symmetry was improved significantly.  相似文献   

2.
A density functional theory based on interaction of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) with cyclic peptides constructed from 3 or 4 alanine molecule (CyAla3 and CyAla4), has been investigated using mixed basis set (C, H, O, Li+, Na+ and K+ using 6-31+G(d), and the heavier cations: Rb+ and Cs+ using LANL2DZ). The minimum energy structures, binding energies, and various thermodynamic parameters of free ligands and their metal cations complexes have been determined with B3LYP and CAM-B3LYP functionals. The order of interaction energies were found to be Li> K> Na> Rb> Cs+ and Li> Na> K? Rb> Cs+, calculated at CAM-B3LYP level for the M/CyAla3 and M/CyAla4 complexes, respectively. Their selectivity trend shows that the highest cation selectivity for Li+ over other alkali metal ions has been achieved on the basis of thermodynamic analysis. The main types of driving force host–guest interactions are investigated, the electron-donating O offers lone pair electrons to the contacting LP* of alkali metal cations.  相似文献   

3.
It is shown by means of IR. spectroscopic methods that nigericin and monensin have a cyclic conformation similar to that of their silver salts. Complex formation constants with sodium and potassium ions follow the selectivity order determined by EMF. measurements on liquid membranes: nigericin: K+ > Rb+ > Na+ > Cs+ > Li+; monensin: Na+ > K+ > Li+ > Rb+ > Cs+. Transport experiments show that nigericin and monensin facilitate the diffusion of potassiumions across model membranes, although in electrolytic transport experiments the permeability is not affected.  相似文献   

4.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)+NaL+(nb)⇔ML+(nb)+Na+(aq) taking place in the two-phase water-nitrobenzene system [M+=Li+, K+, Rb+, Cs+; L = p-tert-butylcalix[4]arene-tetrakis (N, N-dimethylthioacetamide); aq = aqueous phase, nb = nitrobenzene phase] were evaluated. Furthermore, the stability constants of the ML+ complexes in water saturated nitrobenzene were calculated; they were found to increase in the cation order Cs+<Rb+<K+<Li+<Na+.  相似文献   

5.
Starting from ethyl propionylacetate, and ethyl 2‐ethylacetoacetate we prepared 4‐propyl‐7,8‐, 4‐propyl‐6,7‐, 3‐ethyl‐4‐methyl‐7,8‐ and 3‐ethyl‐4‐methyl‐6,7‐dihydroxy‐2H‐chromenones which were allowed to react with the bis‐dihalides or ditosylates of glycols in DMF/Na2CO3 to afford the 6,7‐ and 7,8‐chromenone derivatives of 12‐crown‐4, 15‐crown‐4 and 18‐crown‐6. The products were identified using ir, 13C and 1H nmr, ms and high resolution mass spectroscopy. The cation selectivities of chromenone crown ethers with Li+, Na+ and K+ cations were estimated from the steady state emission fluorescence spectra of free and cation complexed chromenone macrocyclic ethers in acetonitrile.  相似文献   

6.
The rate of the hexacyanoferrate redox system shows a first order dependence on the concentration of the cationic component of the supporting electrolyte. The catalytic influence of the alkali metal cations on the electrode process increases in the order Li+<Na+<K+~Cs+. The temperature dependence of the rate constant of the electrode process in KF and LiNO3 has been measured and the results show that the activated complex is formed by the collision or association of a cation of the supporting electrolyte with the reactant anion, which may already be paired with one cation. It is suggested that this mechanism may be applicable to other electrode reactions involving highly charged species.  相似文献   

7.
The synthesis and complexive abilities of 5,11,17-tris(tert-butyl)-23 amino-25,26,27,28-tetra-propoxycalix[4]arene towards alkali cations Li+, Na+, K+, Rb+, Cs+ and alkali earth cations Mg2+, Ca2+, Sr2+ and Ba2+ in methanol-chloroform mixture have been evaluated at 25°C, using UV-Vis spectrophotometric techniques. The results showed that the ligand is capable to complex with all the cations by 1: 1 metal to ligand ratios. The selectivity presented considering the calculated formation constants are in the order Li+ > Na+ > K+ > Rb+ > Cs+ and Mg2+ > Ca2+ > Sr2+ > Ba2+ with the ligand.  相似文献   

8.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)+CsL+(nb)⇔ML+(nb)+Cs+(aq) taking place in the two-phase water-nitrobenzene system (M+ = Li+, Na+, K+, Rb+; L = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were determined. Moreover, the stability constants of the ML+ complexes in water saturated nitrobenzene were calculated; they were found to increase in the cation order Rb+<Cs+<K+<Na+<Li+.  相似文献   

9.
We have quantum chemically studied alkali cation‐catalyzed aromatic Diels‐Alder reactions between benzene and acetylene forming barrelene using relativistic, dispersion‐corrected density functional theory. The alkali cation‐catalyzed aromatic Diels‐Alder reactions are accelerated by up to 5 orders of magnitude relative to the uncatalyzed reaction and the reaction barrier increases along the series Li+ < Na+ < K+ < Rb+ < Cs+ < none. Our detailed activation strain and molecular‐orbital bonding analyses reveal that the alkali cations lower the aromatic Diels‐Alder reaction barrier by reducing the Pauli repulsion between the closed‐shell filled orbitals of the dienophile and the aromatic diene. We argue that such Pauli mechanism behind Lewis‐acid catalysis is a more general phenomenon. Also, our results may be of direct importance for a more complete understanding of the network of competing mechanisms towards the formation of polycyclic aromatic hydrocarbons (PAHs) in an astrochemical context.  相似文献   

10.
DNA and its conformational transition can be used to design nanometer-scale structures, nano-tweezers and nanomechanical devices. Experiments and molecular simulations have been used to study the concentration effect on the A-DNA→B-DNA conformational transition, but a systematical investigation on counterion effect on the dynamics of this transition has not been reported up to now. In present work, restrained and unrestrained molecular dynamics (MD) simulations have been performed to characterize the stability of DNA conformations and the dynamics of A-DNA→B-DNA transitions in aqueous solutions with different alkali metal counterions. The DNA duplex d(CGCGAATTCGCG)2, coion Cl? and counterions Li+, Na+, K+, Rb+ and Cs+ as well as water molecule were considered using the PARM99 force field in the AMBER8 package. It was found that B-form DNA is more stable than A-form DNA in aqueous electrolyte solutions with different alkali metal counterions. Increasing KCl concentration in solution hinders the A-DNA→B-DNA transition and the transition times for different alkali metal counterions conform to neither the simple sequence related to naked ion size nor to hydrated diameter, but an apparently abnormal sequence of K+ < Rb+ < Cs+ < Na+ < Li+. This abnormal sequence can be well understood in terms of an electrostatic model based on the effective cation diameters and the modified mean-spherical approximation (MMSA). The present results provide valuable information for the design of DNA-based nanomaterials and nanodevices.  相似文献   

11.
The four surface-active derivatives of crown-ethers with a variety of fatty alkyl chains were synthesized and studied in monolayers at various conditions. The areas per crown-ether molecule in monolayers are increasing significantly in the presence of various alkali metal cations in the aqueous subphase. These effects can be explained as complex formation between crown-ethers in the monolayers and cations from aqueous subphase, causing a change in the conformation of the polyether ring of the molecule at the interface. This is accompanied with the change in the cation selectivity (Na+ > Li+ > K+ > Cs+) as compared with the series in volume (K+ > Cs+ > Na+ > Li+). Polymerization of the crown-ether monolayer allows to stabilize the conformation of the molecule at the interface as if tuned to the definite cation.  相似文献   

12.
A class of artificial K+ channels formed by pillararene‐cyclodextrin hybrid molecules have been designed and synthesized. These channels efficiently inserted into lipid bilayers and displayed high selectivity for K+ over Na+ in fluorescence and electrophysiological experiments. The cation transport selectivity of the artificial channels is tunable by varying the length of the linkers between pillararene and cyclodexrin. The shortest channel showed specific transmembrane transport preference for K+ over all alkali metal ions (selective sequence: K+ > Cs+ > Rb+ > Na+ > Li+), and is rarely observed for artificial K+ channels. The high selectivity of this artificial channel for K+ over Na+ ensures specific transmembrane translocation of K+, and generated stable membrane potential across lipid bilayers.  相似文献   

13.
The characteristics properties of xanthone phosphorescence and of 2-pentanone photolysis in alkali metal cation-exchanged zeolites have been investigated to clarify the effect of the micro-environment of host-adsorbents on the photophysical and photochemical properties of guest-molecules in restricted void spaces. The enhancement of the phosphorescence yields of xanthone included in zeolites is observed by changing the exchangeablealkali metal cation from Li+ to Cs+. Simultaneously, the phosphorescence lifetimes were observed to continuously shorten by changing the cation from Li+ to Cs+. These results suggest that the external heavy-atom effect deriving from the alkali metal cations on the singlet-triplet transitions of xanthone molecules stabilized on alkali metal cations in the order of Li+, Na+, K+, Rb+, and Cs+. The yields for the photolysis of 2-pentanone included in zeolites increase with changing the alkali metal cation from Li+ to Cs+. IR investigations of the adsorption state of 2-pentanone indicate that strength of the interaction between the alkali metal cations and 2-pentanones decreases by changing the cation from Li+ to Cs+, which results in a longer lifetime of 2-pentanone. The selectivity of propylene formation is dramatically increased by changing the cation from Li+ to Cs+. The enhanced formation of propylene is asociated with the hydrogen absorption from propyl radicals by lattice oxygen, their basicity increasing by changing the cation from Li+ to Cs+. Thus, these changes in the zeolite cavities modified by exchanging cations caused significant effects not only on the excited state but also on the following chemical reactions of ketones.  相似文献   

14.
Water self-diffusion and ion mobilities in various ionic forms (H+, Li+, Na+, Rb+, Cs+, and Ba2+) of perfluorinated sulfocationic membranes MF-4SK were studied by NMR and impedance spectroscopy. When degrees of hydration are low, the self-diffusion coefficients of water and ionic conductivities are considerably affected by the water content of the membrane. The self-diffusion coefficients decrease in the order H+ > Ba2+ > Cs+ > Rb+ > Na+ > Li+, whereas the ion mobility decreases in the order H+ > Li+ > Na+ > Cs+ > Ba2+.  相似文献   

15.
The synthesis of a cylindrical, imine‐based cage composed of two trimeric metallamacrocycles is described. The cage acts as a heterotopic receptor for alkali metal cations. The small cations Li+, Na+, and K+ bind to the outside of the cage with good selectivity for Li+, whereas the larger cations Rb+ and Cs+ are bound inside the cage to form unusual π complexes with a good selectivity for Cs+. Negative heterotopic cooperativity between the two binding sites is observed. The complexation of Cs+ is associated with a color change, which enables the cage to be used as a specific sensor for Cs+.  相似文献   

16.
Electrosubstitution of alkali cations in mixed-alkali glass containing both Na2O and K2O for other monovalent metal cations (M+=Li+, Ag+, and Cs+) was investigated using a solid-state electrochemical method. The fundamental electrolysis system consists of anode/M+-conducting microelectrode/glass/Na-β″-Al2O3/cathode, where M+ is substituted for the alkali metal ions in the glass under an applied electric field. Li+ ions attacked only Na+ sites, and Ag+ ions replaced Na+ sites more readily than K+. In contrast, Cs+ ions simultaneously substituted for both Na+ and K+ sites. The substitution behavior appears to depend on the difference in ionic conductivity between K+ and Na+ and the radius of the dopant. This mechanism was discussed qualitatively.  相似文献   

17.
Cationization is a valuable tool to enable mass spectrometric studies on neutral transition‐metal complexes (e.g., homogenous catalysts). However, knowledge of potential impacts on the molecular structure and catalytic reactivity induced by the cationization is indispensable to extract information about the neutral complex. In this study, we cationize a bimetallic complex [AuZnCl3] with alkali metal ions (M+) and investigate the charged adducts [AuZnCl3M]+ by electrospray ionization mass spectrometry (ESI‐MS). Infrared multiple photon dissociation (IR‐MPD) in combination with density functional theory (DFT) calculations reveal a μ3 binding motif of all alkali ions to the three chlorido ligands. The cationization induces a reorientation of the organic backbone. Collision‐induced dissociation (CID) studies reveal switches of fragmentation channels by the alkali ion and by the CID amplitude. The Li+ and Na+ adducts prefer the sole loss of ZnCl2, whereas the K+, Rb+, and Cs+ adducts preferably split off MCl2ZnCl. Calculated energetics along the fragmentation coordinate profiles allow us to interpret the experimental findings to a level of subtle details. The Zn2+ cation wins the competition for the nitrogen coordination sites against K+, Rb+, and Cs+ , but it loses against Li+ and Na+ in a remarkable deviation from a naive hard and soft acids and bases (HSAB) concept. The computations indicate expulsion of MCl2ZnCl rather than of MCl and ZnCl2.  相似文献   

18.
The stability constants (Ks) of the complexes of alkali and alkaline earth metal ions with new type of the cryptands containing one or two thiourea moieties in one of the bridges were determined by means of pH-metric measurements in 95% aqueous methanol at 25 °C. Cryptands studied do not show any regular alteration of complexes stability depending on the mutual relation of cryptand cavity and cation sizes. In all cases, they form the most stable complexes with K+ along the series of alkali metal ions and with cations of Ba2+ or Sr2+ in the series of alkaline earth ions independently of variations of their structure. The log Ks values for K+, Sr2+ and Ba2+ vary in limits 3.51-5.90, 2.29-7.05 and 2.35-7.51, respectively, depending on the cryptands structure. The complexes stability of the studied cryptands increases in the order Li+ < Na+ (Cs+) < Cs+ (Na+) < Rb+ < K+ and Mg2+ < Ca2+ < Sr2+ (Ba2+) < Ba2+ (Sr2+). However, cryptands containing at least one oxygen atom between the nitrogen bridgehead and group of thiourea form considerably more stable complexes with respect to cryptands in which thiourea group connected with nitrogen bridgeheads via ethylenic chain. The origins of the cryptands complexation behavior are discussed in terms of ligands and complexes structural features.  相似文献   

19.
Measurements by fluoride ion-selective electrode potentiometry on the very weak monofluoride complexes of the alkali metal ions in aqueous solution at 25°C and an ionic strength of 1M indicate their stability constants lie in the order Li+ > Na+ > K+ > Rb+ ? Cs+. Data at varying ionic strengths and temperatures were used to calculate infinite dilution stability constants and enthalpies and entropies of complexation for LiF and NaF.  相似文献   

20.
2-Methylresorcinarene and its methylene-bridged cavitand derivative as host compounds were investigated in selective complexation of alkali metal ions as guests in methanol media by photoluminescence measurements. These host molecules possess either flexible (2-methylresorcinarene) or rigid (cavitand) molecular skeleton. The Benesi–Hildebrand method and the van't Hoff theory have been applied to determine the stability constants and the thermodynamic parameters, respectively. Considerable interactions between 2-methylresorcinarene and Li+ or Na+ ions have been observed while the rigid cavitand derivative can interact only with K+ or Cs+ ions. Neither the complexes of 2-methylresorcinarene with K+ or Cs+ nor those of the cavitand derivative with Li+ or Na+ ions are stable at room temperature in methanol media. Quantum-chemical investigations justified that only solvated Li+ and Na+ ions can form stable complexes with 2-methylresorcinarene while unsolvated K+ and Cs+ ions form stable complexes with the methylene-bridged cavitand. These results highlight that the stability of the guest solvation shell and its size could play a key role in the selectivity behaviour of host molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号