首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove \({|x|^{-2}}\) decay of the critical two-point function for the continuous-time weakly self-avoiding walk on \({\mathbb{Z}^{d}}\), in the upper critical dimension d = 4. This is a statement that the critical exponent \({\eta}\) exists and is equal to zero. Results of this nature have been proved previously for dimensions \({d \ge 5}\) using the lace expansion, but the lace expansion does not apply when d = 4. The proof is based on a rigorous renormalisation group analysis of an exact representation of the continuous-time weakly self-avoiding walk as a supersymmetric field theory. Much of the analysis applies more widely and has been carried out in a previous paper, where an asymptotic formula for the susceptibility is obtained. Here, we show how observables can be incorporated into the analysis to obtain a pointwise asymptotic formula for the critical two-point function. This involves perturbative calculations similar to those familiar in the physics literature, but with error terms controlled rigorously.  相似文献   

2.
We extend and apply a rigorous renormalisation group method to study critical correlation functions, on the 4-dimensional lattice \({{{\mathbb{Z}}}^{4}}\), for the weakly coupled n-component \({|\varphi|^{4}}\) spin model for all \({n \ge 1}\), and for the continuous-time weakly self-avoiding walk. For the \({|\varphi|^{4}}\) model, we prove that the critical two-point function has |x|?2 (Gaussian) decay asymptotically, for \({n \ge 1}\). We also determine the asymptotic decay of the critical correlations of the squares of components of \({\varphi}\), including the logarithmic corrections to Gaussian scaling, for \({n \ge 1}\). The above extends previously known results for n = 1 to all \({n \ge 1}\), and also observes new phenomena for n > 1, all with a new method of proof. For the continuous-time weakly self-avoiding walk, we determine the decay of the critical generating function for the “watermelon” network consisting of p weakly mutually- and self-avoiding walks, for all \({p \ge 1}\), including the logarithmic corrections. This extends a previously known result for p = 1, for which there is no logarithmic correction, to a much more general setting. In addition, for both models, we study the approach to the critical point and prove the existence of logarithmic corrections to scaling for certain correlation functions. Our method gives a rigorous analysis of the weakly self-avoiding walk as the n = 0 case of the \({|\varphi|^{4}}\) model, and provides a unified treatment of both models, and of all the above results.  相似文献   

3.
4.
Let \({\mathfrak{D}}\) be the space consists of pairs (f, g), where f is a univalent function on the unit disc with f(0) = 0, g is a univalent function on the exterior of the unit disc with g(∞) = ∞ and f′(0)g′(∞) = 1. In this article, we define the time variables \({t_n, n\in \mathbb{Z}}\), on \({\mathfrak{D}}\) which are holomorphic with respect to the natural complex structure on \({\mathfrak{D}}\) and can serve as local complex coordinates for \({\mathfrak{D}}\) . We show that the evolutions of the pair (f, g) with respect to these time coordinates are governed by the dispersionless Toda hierarchy flows. An explicit tau function is constructed for the dispersionless Toda hierarchy. By restricting \({\mathfrak{D}}\) to the subspace Σ consists of pairs where \({f(w)=1/\overline{g(1/\bar{w})}}\), we obtain the integrable hierarchy of conformal mappings considered by Wiegmann and Zabrodin [31]. Since every C 1 homeomorphism γ of the unit circle corresponds uniquely to an element (f, g) of \({\mathfrak{D}}\) under the conformal welding \({\gamma=g^{-1}\circ f}\), the space Homeo C (S 1) can be naturally identified as a subspace of \({\mathfrak{D}}\) characterized by f(S 1) = g(S 1). We show that we can naturally define complexified vector fields \({\partial_n, n\in \mathbb{Z}}\) on Homeo C (S 1) so that the evolutions of (f, g) on Homeo C (S 1) with respect to ? n satisfy the dispersionless Toda hierarchy. Finally, we show that there is a similar integrable structure for the Riemann mappings (f ?1g ?1). Moreover, in the latter case, the time variables are Fourier coefficients of γ and 1/γ ?1.  相似文献   

5.
We consider random Schrödinger equations on \({\mathbb{R}^{d}}\) for d≥ 3 with a homogeneous Anderson-Poisson type random potential. Denote by λ the coupling constant and ψ t the solution with initial data ψ0. The space and time variables scale as \({x\sim \lambda^{-2 -\kappa/2}, t \sim \lambda^{-2 -\kappa}}\) with 0 < κ <  κ0(d). We prove that, in the limit λ → 0, the expectation of the Wigner distribution of ψ t converges weakly to the solution of a heat equation in the space variable x for arbitrary L 2 initial data. The proof is based on a rigorous analysis of Feynman diagrams. In the companion paper [10] the analysis of the non-repetition diagrams was presented. In this paper we complete the proof by estimating the recollision diagrams and showing that the main terms, i.e. the ladder diagrams with renormalized propagator, converge to the heat equation.  相似文献   

6.
We consider bond percolation on \({\mathbb {Z}}^d\times {\mathbb {Z}}^s\) where edges of \({\mathbb {Z}}^d\) are open with probability \(p<p_c({\mathbb {Z}}^d)\) and edges of \({\mathbb {Z}}^s\) are open with probability q, independently of all others. We obtain bounds for the critical curve in (pq), with p close to the critical threshold \(p_c({\mathbb {Z}}^d)\). The results are related to the so-called dimensional crossover from \({\mathbb {Z}}^d\) to \({\mathbb {Z}}^{d+s}\).  相似文献   

7.
When the configuration space of a quantum particle is semibounded, the von Neumann algebra of the observables \({\mathcal{W}_+}\) is generated by a unitary group \({\{V(\beta) = {\rm exp}(-i\beta q)\},\,\beta\in\mathbb{R}}\) , and a semigroup {U(α)}, α ≥ 0, of isometries. We show that when \({\mathcal W_+}\) is a factor it is completely reducible into equivalent components, and that in each component the lower end x 0 of the spectrum of q is the same. We give an algebraic characterization of x 0 and also obtain a straightforward new proof that the irreducible representations of \({\mathcal W_+}\) with the same value of x 0 are equivalent. In the general case \({\mathcal W_+}\) decomposes into the direct integral of factors which correspond to the possible values of x 0.  相似文献   

8.
Spectral dispersions of index of refraction \({n(\lambda )}\) and extinction coefficient \({\kappa (\lambda )}\) of undoped amorphous selenium (a-Se) films of three thicknesses (d?≈?0.5, 0.75, and 1.0 µm) were evaluated by analyzing experimental room-temperature normal-incidence transmittance-wavelength (\({{T_{{\text{exp}}}}(\lambda )} - \lambda\)) data (λ =?400–1100 µm) of their air-supported {a-Se film/thick glass slide}-stacks using Swanepoel’s transmission envelope theory of uniform films. Above a wavelength \({{\lambda _c}\,\, \approx \,\,640\;{\text{nm}}}\), as-measured \({{T_{{\text{exp}}}}(\lambda )}\,\, - \,\lambda\) spectra display well-resolved maxima and minima, with minor shrinkage in transparent and weak absorption regions (750–1100 nm). Below \({\lambda _{\text{c}}}\), a smeared sharp decline of \({{T_{{\text{exp}}}}(\lambda )}\) with decreasing λ, signifying strong absorption in a-Se films and existence of band-tail localized states. For λ > λ c, the \({n\,(\lambda )}\, - \,\lambda\) data retrieved from algebraic envelope procedures followed a Sellmeier-like dispersion relation, with the best-fit values of high-frequency dielectric constant \({{\varepsilon _\infty }\, \approx \,\,{\text{4.9}}}\), static index of refraction \({{n_{\text{0}}} = n\left( {E\, \to \,{\text{0}}} \right)\,\, \approx \,\,{\text{2.43}}}\), and resonance wavelength \({{\lambda _0}\, \approx \,490\,\,{\text{nm}}}\), which may be assigned to onset of photogeneration in a-Se. Urbach-like dependency of absorption coefficient \({\alpha (h{{\nu }})}\) of a-Se films on photon energy \({h{{\nu }}}\) was realized with an Urbach-tail breadth of 85 meV. All achieved optical parameters were found to be slightly dependent on film thickness. Findings of present algebraic analysis are consistent with reported literature results obtained on the basis of other optical analytical approaches.  相似文献   

9.
Let μ be an arbitrary composition of M + N and let \({\mathfrak{s}}\) be an arbitrary \({0^{M}1^{N}}\)- sequence. A new presentation, depending on \({\mu \rm and \mathfrak{s}}\), of the super Yangian YM|N associated to the general linear Lie superalgebra \({\mathfrak{gl}_{M|N}}\) is obtained.  相似文献   

10.
The general class of problems we consider is the following: Let Ω 1 be a bounded domain in \({\mathbb{R}^d}\) for d ≥ 2 and let u 0 be a velocity field on all of \({\mathbb{R}^d}\) . Suppose that for all R ≥ 1 we have an operator \({\mathcal{T}_R}\) that projects u 0 restricted to 1 (Ω 1 scaled by R) into a function space on 1 for which the solution to some initial value problem is well-posed with \({\mathcal{T}_{R}u^0}\) as the initial velocity. Can we show that as R → ∞ the solution to the initial value problem on 1 converges to a solution in the whole space? We answer this question when d  =  2 for weak solutions to the Navier-Stokes and Euler equations. For the Navier-Stokes equations we assume the lowest regularity of u 0 for which one can obtain adequate control on the pressure. For the Euler equations we assume the lowest feasible regularity of u 0 for which uniqueness of solutions to the Euler equations is known (thus, we allow “slightly unbounded” vorticity). In both cases, we obtain strong convergence of the velocity and the vorticity as R → ∞ and, for the Euler equations, the flow. Our approach yields, in principle, a bound on the rates of convergence.  相似文献   

11.
For a Hopf algebra B, we endow the Heisenberg double \({\mathcal{H}(B^*)}\) with the structure of a module algebra over the Drinfeld double \({\mathcal{D}(B)}\). Based on this property, we propose that \({\mathcal{H}(B^*)}\) is to be the counterpart of the algebra of fields on the quantum-group side of the Kazhdan–Lusztig duality between logarithmic conformal field theories and quantum groups. As an example, we work out the case where B is the Taft Hopf algebra related to the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) quantum group that is Kazhdan–Lusztig-dual to (p,1) logarithmic conformal models. The corresponding pair \({(\mathcal{D}(B),\mathcal{H}(B^*))}\) is “truncated” to \({(\overline{\mathcal{U}}_{\mathfrak{q}} s\ell2,\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2))}\), where \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)}\) is a \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) module algebra that turns out to have the form \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)=\mathbb{C}_{\mathfrak{q}}[z,\partial]\otimes\mathbb{C}[\lambda]/(\lambda^{2p}-1)}\), where \({\mathbb{C}_{\mathfrak{q}}[z,\partial]}\) is the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\)-module algebra with the relations z p  = 0, ? p  = 0, and \({\partial z = \mathfrak{q}-\mathfrak{q}^{-1} + \mathfrak{q}^{-2} z\partial}\).  相似文献   

12.
A \({\mathbb{Z}_N}\) -curve is one of the form \({y^{N}=(x-\lambda_{1})^{m_{1}}\cdots(x-\lambda_{s})^{m_{s}}}\) . When N = 2 these curves are called hyperelliptic and for them Thomae proved his classical formulae linking the theta functions corresponding to their period matrices to the branching values λ1, . . . , λ s . In his work on Fermionic fields on \({\mathbb{Z}_N}\) -curves with arbitrary N, Bershadsky and Radul discovered the existence of generalized Thomae’s formulae for these curves which they wrote down explicitly in the case in which all rotation numbers m i equal 1. This work was continued by several authors and new Thomae’s type formulae for \({\mathbb{Z}_N}\) -curves with other rotation numbers m i were found. In this article we prove that for some choices of the rotation numbers the corresponding \({\mathbb{Z}_N}\) -curves do not admit such generalized Thomae’s formulae.  相似文献   

13.
We consider solutions of the scalar wave equation \({\Box_g\phi=0}\), without symmetry, on fixed subextremal Reissner-Nordström backgrounds \({(\mathcal{M}, g)}\) with nonvanishing charge. Previously, it has been shown that for ? arising from sufficiently regular data on a two ended Cauchy hypersurface, the solution and its derivatives decay suitably fast on the event horizon \({\mathcal{H}^+}\). Using this, we show here that ? is in fact uniformly bounded, \({|\phi| \leq C}\), in the black hole interior up to and including the bifurcate Cauchy horizon \({\mathcal{C}\mathcal{H}^+}\), to which ? in fact extends continuously. The proof depends on novel weighted energy estimates in the black hole interior which, in combination with commutation by angular momentum operators and application of Sobolev embedding, yield uniform pointwise estimates. In a forthcoming companion paper we will extend the result to subextremal Kerr backgrounds with nonvanishing rotation.  相似文献   

14.
The 2D Discrete Gaussian model gives each height function \({\eta : {\mathbb{Z}^2\to\mathbb{Z}}}\) a probability proportional to \({\exp(-\beta \mathcal{H}(\eta))}\), where \({\beta}\) is the inverse-temperature and \({\mathcal{H}(\eta) = \sum_{x\sim y}(\eta_x-\eta_y)^2}\) sums over nearest-neighbor bonds. We consider the model at large fixed \({\beta}\), where it is flat unlike its continuous analog (the Discrete Gaussian Free Field). We first establish that the maximum height in an \({L\times L}\) box with 0 boundary conditions concentrates on two integers M, M + 1 with \({M\sim \sqrt{(1/2\pi\beta)\log L\log\log L}}\). The key is a large deviation estimate for the height at the origin in \({\mathbb{Z}^{2}}\), dominated by “harmonic pinnacles”, integer approximations of a harmonic variational problem. Second, in this model conditioned on \({\eta\geq 0}\) (a floor), the average height rises, and in fact the height of almost all sites concentrates on levels H, H + 1 where \({H\sim M/\sqrt{2}}\). This in particular pins down the asymptotics, and corrects the order, in results of Bricmont et al. (J. Stat. Phys. 42(5–6):743–798, 1986), where it was argued that the maximum and the height of the surface above a floor are both of order \({\sqrt{\log L}}\). Finally, our methods extend to other classical surface models (e.g., restricted SOS), featuring connections to p-harmonic analysis and alternating sign matrices.  相似文献   

15.
Let G be a classical compact Lie group and G μ the associated compact matrix quantum group deformed by a positive parameter μ (or \({\mu\in{\mathbb R}\setminus\{0\}}\) in the type A case). It is well known that the category of unitary representations of G μ is a braided tensor C*–category. We show that any braided tensor *–functor \({\rho: \text{Rep}(G_\mu)\to\mathcal{M}}\) to another braided tensor C*–category with irreducible tensor unit is full if |μ| ≠ 1. In particular, the functor of restriction RepG μ → Rep(K) to a proper compact quantum subgroup K cannot be made into a braided functor. Our result also shows that the Temperley–Lieb category \({\mathcal{T}_{\pm d}}\) for d > 2 can not be embedded properly into a larger category with the same objects as a braided tensor C*–subcategory.  相似文献   

16.
We show that the orthogonal separation coordinates on the sphere S n are naturally parametrised by the real version of the Deligne–Mumford–Knudsen moduli space \({\bar{M}_{0,n+2}({\mathbb{R}})}\) of stable curves of genus zero with n + 2 marked points. We use the combinatorics of Stasheff polytopes tessellating \({\bar{M}_{0,n+2}({\mathbb{R}})}\) to classify the different canonical forms of separation coordinates and deduce an explicit construction of separation coordinates, as well as of Stäckel systems from the mosaic operad structure on \({\bar{M}_{0,n+2}({\mathbb{R}})}\).  相似文献   

17.
We develop in this paper the principles of an associative algebraic approach to bulk logarithmic conformal field theories (LCFTs). We concentrate on the closed \({\mathfrak{gl}(1|1)}\) spin-chain and its continuum limit—the \({c=-2}\) symplectic fermions theory—and rely on two technical companion papers, Gainutdinov et al. (Nucl Phys B 871:245–288, 2013) and Gainutdinov et al. (Nucl Phys B 871:289–329, 2013). Our main result is that the algebra of local Hamiltonians, the Jones–Temperley–Lieb algebra JTL N , goes over in the continuum limit to a bigger algebra than \({\boldsymbol{\mathcal{V}}}\), the product of the left and right Virasoro algebras. This algebra, \({\mathcal{S}}\)—which we call interchiral, mixes the left and right moving sectors, and is generated, in the symplectic fermions case, by the additional field \({S(z,\bar{z})\equiv S_{\alpha\beta} \psi^\alpha(z)\bar{\psi}^\beta(\bar{z})}\), with a symmetric form \({S_{\alpha\beta}}\) and conformal weights (1,1). We discuss in detail how the space of states of the LCFT (technically, a Krein space) decomposes onto representations of this algebra, and how this decomposition is related with properties of the finite spin-chain. We show that there is a complete correspondence between algebraic properties of finite periodic spin chains and the continuum limit. An important technical aspect of our analysis involves the fundamental new observation that the action of JTL N in the \({\mathfrak{gl}(1|1)}\) spin chain is in fact isomorphic to an enveloping algebra of a certain Lie algebra, itself a non semi-simple version of \({\mathfrak{sp}_{N-2}}\). The semi-simple part of JTL N is represented by \({U \mathfrak{sp}_{N-2}}\), providing a beautiful example of a classical Howe duality, for which we have a non semi-simple version in the full JTL N image represented in the spin-chain. On the continuum side, simple modules over \({\mathcal{S}}\) are identified with “fundamental” representations of \({\mathfrak{sp}_\infty}\).  相似文献   

18.
Let {M k } be a degenerating sequence of finite volume, hyperbolic manifolds of dimension d, with d = 2 or d = 3, with finite volume limit M . Let \({Z_{M_{k}} (s)}\) be the associated sequence of Selberg zeta functions, and let \({{\mathcal{Z}}_{k} (s)}\) be the product of local factors in the Euler product expansion of \({Z_{M_{k}} (s)}\) corresponding to the pinching geodesics on M k . The main result in this article is to prove that \({Z_{M_{k}} (s)/{\mathcal{Z}}_{k} (s)}\) converges to \({Z_{M_{\infty}} (s)}\) for all \({s \in \mathbf{C}}\)with Re(s) > (d ? 1)/2. The significant feature of our analysis is that the convergence of \({Z_{M_{k}} (s)/{\mathcal{Z}}_{k} (s)}\) to \({Z_{M_{\infty}} (s)}\) is obtained up to the critical line, including the right half of the critical strip, a region where the Euler product definition of the Selberg zeta function does not converge. In the case d = 2, our result reproves by different means the main theorem in Schulze (J Funct Anal 236:120–160, 2006).  相似文献   

19.
Let \({T=\mathbb R^d}\) . Let a function \({QT^2\to\mathbb C}\) satisfy \({Q(s,t)=\overline{Q(t,s)}}\) and \({|Q(s,t)|=1}\). A generalized statistics is described by creation operators \({\partial_t^\dagger}\) and annihilation operators ? t , \({t\in T}\), which satisfy the Q-commutation relations: \({\partial_s\partial^\dagger_t = Q(s, t)\partial^\dagger_t\partial_s+\delta(s, t)}\) , \({\partial_s\partial_t = Q(t, s)\partial_t\partial_s}\), \({\partial^\dagger_s\partial^\dagger_t = Q(t, s)\partial^\dagger_t\partial^\dagger_s}\). From the point of view of physics, the most important case of a generalized statistics is the anyon statistics, for which Q(s, t) is equal to q if s < t, and to \({\bar q}\) if s > t. Here \({q\in\mathbb C}\) , |q| = 1. We start the paper with a detailed discussion of a Q-Fock space and operators \({(\partial_t^\dagger,\partial_t)_{t\in T}}\) in it, which satisfy the Q-commutation relations. Next, we consider a noncommutative stochastic process (white noise) \({\omega(t)=\partial_t^\dagger+\partial_t+\lambda\partial_t^\dagger\partial_t}\) , \({t\in T}\) . Here \({\lambda\in\mathbb R}\) is a fixed parameter. The case λ = 0 corresponds to a Q-analog of Brownian motion, while λ ≠ 0 corresponds to a (centered) Q-Poisson process. We study Q-Hermite (Q-Charlier respectively) polynomials of infinitely many noncommutatative variables \({(\omega(t))_{t\in T}}\) . The main aim of the paper is to explain the notion of independence for a generalized statistics, and to derive corresponding Lévy processes. To this end, we recursively define Q-cumulants of a field \({(\xi(t))_{t\in T}}\). This allows us to define a Q-Lévy process as a field \({(\xi(t))_{t\in T}}\) whose values at different points of T are Q-independent and which possesses a stationarity of increments (in a certain sense). We present an explicit construction of a Q-Lévy process, and derive a Nualart–Schoutens-type chaotic decomposition for such a process.  相似文献   

20.
We provide a new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. The proof applies to infinite-range models on arbitrary locally finite transitive infinite graphs. For Bernoulli percolation, we prove finiteness of the susceptibility in the subcritical regime \({\beta < \beta_c}\), and the mean-field lower bound \({\mathbb{P}_\beta[0\longleftrightarrow \infty ]\ge (\beta-\beta_c)/\beta}\) for \({\beta > \beta_c}\). For finite-range models, we also prove that for any \({\beta < \beta_c}\), the probability of an open path from the origin to distance n decays exponentially fast in n. For the Ising model, we prove finiteness of the susceptibility for \({\beta < \beta_c}\), and the mean-field lower bound \({\langle \sigma_0\rangle_\beta^+\ge \sqrt{(\beta^2-\beta_c^2)/\beta^2}}\) for \({\beta > \beta_c}\). For finite-range models, we also prove that the two-point correlation functions decay exponentially fast in the distance for \({\beta < \beta_c}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号