首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Lie algebra \({\mathcal{D}}\) of regular differential operators on the circle has a universal central extension \({\hat{\mathcal{D}}}\). The invariant subalgebra \({\hat{\mathcal{D}}^+}\) under an involution preserving the principal gradation was introduced by Kac, Wang, and Yan. The vacuum \({\hat{\mathcal{D}}^+}\)-module with central charge \({c \in \mathbb{C}}\), and its irreducible quotient \({\mathcal{V}_c}\), possess vertex algebra structures, and \({\mathcal{V}_c}\) has a nontrivial structure if and only if \({c \in \frac{1}{2}\mathbb{Z}}\). We show that for each integer \({n > 0}\), \({\mathcal{V}_{n/2}}\) and \({\mathcal{V}_{-n}}\) are \({\mathcal{W}}\)-algebras of types \({\mathcal{W}(2, 4,\dots,2n)}\) and \({\mathcal{W}(2, 4,\dots, 2n^2 + 4n)}\), respectively. These results are formal consequences of Weyl’s first and second fundamental theorems of invariant theory for the orthogonal group \({{\rm O}(n)}\) and the symplectic group \({{\rm Sp}(2n)}\), respectively. Based on Sergeev’s theorems on the invariant theory of \({{\rm Osp}(1, 2n)}\) we conjecture that \({\mathcal{V}_{-n+1/2}}\) is of type \({\mathcal{W}(2, 4,\dots, 4n^2 + 8n + 2)}\), and we prove this for \({n = 1}\). As an application, we show that invariant subalgebras of \({\beta\gamma}\)-systems and free fermion algebras under arbitrary reductive group actions are strongly finitely generated.  相似文献   

3.
In the framework of algebraic quantum field theory, we study the category \({\Delta_{{\rm BF}}^{\mathfrak{A}}}\) of stringlike localised representations of a net of observables \({\mathcal{O} \mapsto \mathfrak{A}(\mathcal{O})}\) in three dimensions. It is shown that compactly localised (DHR) representations give rise to a non-trivial centre of \({\Delta_{{\rm BF}}^{\mathfrak{A}}}\) with respect to the braiding. This implies that \({\Delta_{{\rm BF}}^{\mathfrak{A}}}\) cannot be modular when non-trivial DHR sectors exist. Modular tensor categories, however, are important for topological quantum computing. For this reason, we discuss a method to remove this obstruction to modularity.Indeed, the obstruction can be removed by passing from the observable net \({\mathfrak{A}(\mathcal{O})}\) to the Doplicher-Roberts field net \({\mathfrak{F}(\mathcal{O})}\). It is then shown that sectors of \({\mathfrak{A}}\) can be extended to sectors of the field net that commute with the action of the corresponding symmetry group. Moreover, all such sectors are extensions of sectors of \({\mathfrak{A}}\). Finally, the category \({\Delta_{{\rm BF}}^{\mathfrak{F}}}\) of sectors of \({\mathfrak{F}}\) is studied by investigating the relation with the categorical crossed product of \({\Delta_{{\rm BF}}^{\mathfrak{A}}}\) by the subcategory of DHR representations. Under appropriate conditions, this completely determines the category \({\Delta_{{\rm BF}}^{\mathfrak{F}}}\).  相似文献   

4.
We study transmission problems with free interfaces from one random medium to another. Solutions are required to solve distinct partial differential equations, \({{\rm L}_{+}}\) and \({{\rm L}_{-}}\), within their positive and negative sets respectively. A corresponding flux balance from one phase to another is also imposed. We establish existence and \({L^{\infty}}\) bounds of solutions. We also prove that variational solutions are non-degenerate and develop the regularity theory for solutions of such free boundary problems.  相似文献   

5.
We present natural families of coordinate algebras on noncommutative products of Euclidean spaces \({\mathbb {R}}^{N_1} \times _{\mathcal {R}} {\mathbb {R}}^{N_2}\). These coordinate algebras are quadratic ones associated with an \(\mathcal {R}\)-matrix which is involutive and satisfies the Yang–Baxter equations. As a consequence, they enjoy a list of nice properties, being regular of finite global dimension. Notably, we have eight-dimensional noncommutative euclidean spaces \({\mathbb {R}}^{4} \times _{\mathcal {R}} {\mathbb {R}}^{4}\). Among these, particularly well behaved ones have deformation parameter \(\mathbf{u} \in {\mathbb {S}}^2\). Quotients include seven spheres \({\mathbb {S}}^{7}_\mathbf{u}\) as well as noncommutative quaternionic tori \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u} = {\mathbb {S}}^3 \times _\mathbf{u} {\mathbb {S}}^3\). There is invariance for an action of \({{\mathrm{SU}}}(2) \times {{\mathrm{SU}}}(2)\) on the torus \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u}\) in parallel with the action of \(\mathrm{U}(1) \times \mathrm{U}(1)\) on a ‘complex’ noncommutative torus \({\mathbb {T}}^2_\theta \) which allows one to construct quaternionic toric noncommutative manifolds. Additional classes of solutions are disjoint from the classical case.  相似文献   

6.
The quantum double of the Haagerup subfactor, the first irreducible finite depth subfactor with index above 4, is the most obvious candidate for exotic modular data. We show that its modular data \({\mathcal{D}{\rm Hg}}\) fits into a family \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\) , where n ≥  0 and \({\omega\in \mathbb{Z}_{2n+1}}\) . We show \({\mathcal{D}^0 {\rm Hg}_{2n+1}}\) is related to the subfactors Izumi hypothetically associates to the cyclic groups \({\mathbb{Z}_{2n+1}}\) . Their modular data comes equipped with canonical and dual canonical modular invariants; we compute the corresponding alpha-inductions, etc. In addition, we show there are (respectively) 1, 2, 0 subfactors of Izumi type \({\mathbb{Z}_7, \mathbb{Z}_9}\) and \({\mathbb{Z}_3^2}\) , and find numerical evidence for 2, 1, 1, 1, 2 subfactors of Izumi type \({\mathbb{Z}_{11},\mathbb{Z}_{13},\mathbb{Z}_{15},\mathbb{Z}_{17},\mathbb{Z}_{19}}\) (previously, Izumi had shown uniqueness for \({\mathbb{Z}_3}\) and \({\mathbb{Z}_5}\)), and we identify their modular data. We explain how \({\mathcal{D}{\rm Hg}}\) (more generally \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\)) is a graft of the quantum double \({\mathcal{D} Sym(3)}\) (resp. the twisted double \({\mathcal{D}^\omega D_{2n+1}}\)) by affine so(13) (resp. so\({(4n^2+4n+5)}\)) at level 2. We discuss the vertex operator algebra (or conformal field theory) realisation of the modular data \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\) . For example we show there are exactly 2 possible character vectors (giving graded dimensions of all modules) for the Haagerup VOA at central charge c = 8. It seems unlikely that any of this twisted Haagerup-Izumi modular data can be regarded as exotic, in any reasonable sense.  相似文献   

7.
In recent years different aspects of categorification of the boson–fermion correspondence have been studied. In this paper we propose a categorification of the boson–fermion correspondence based on the category of tensor modules of the Lie algebra sl(∞) of finitary infinite matrices. By \({\mathbb{T}^{+}}\) we denote the category of “polynomial” tensor sl(∞)-modules. There is a natural “creation” functor \({{\mathcal{T}_{N}} : {\mathbb{T}^{+}} \to {\mathbb{T}^{+}}}\), \({M \mapsto N \otimes M, \quad M,N \in \mathbb{T}^{+}}\). The key idea of the paper is to employ the entire category \({\mathbb{T}}\) of tensor sl(∞)-modules in order to define the “annihilation” functor \({{\mathcal{D}_{N}} : {\mathbb{T}^{+}} \to {\mathbb{T}^{+}}}\) corresponding to \({{\mathcal{T}_{N}}}\). We show that the relations allowing one to express fermions via bosons arise from relations in the cohomology of complexes of linear endofunctors on \({{\mathbb{T}^{+}}}\).  相似文献   

8.
We consider time delay for the Dirac equation. A new method to calculate the asymptotics of the expectation values of the operator \({\int\limits_{0} ^{\infty}{\rm e}^{iH_{0}t}\zeta(\frac{\vert x\vert }{R}) {\rm e}^{-iH_{0}t}{\rm d}t}\), as \({R \rightarrow \infty}\), is presented. Here, H0 is the free Dirac operator and \({\zeta\left(t\right)}\) is such that \({\zeta\left(t\right) = 1}\) for \({0 \leq t \leq 1}\) and \({\zeta\left(t\right) = 0}\) for \({t > 1}\). This approach allows us to obtain the time delay operator \({\delta \mathcal{T}\left(f\right)}\) for initial states f in \({\mathcal{H} _{2}^{3/2+\varepsilon}(\mathbb{R}^{3};\mathbb{C}^{4})}\), \({\varepsilon > 0}\), the Sobolev space of order \({3/2+\varepsilon}\) and weight 2. The relation between the time delay operator \({\delta\mathcal{T}\left(f\right)}\) and the Eisenbud–Wigner time delay operator is given. In addition, the relation between the averaged time delay and the spectral shift function is presented.  相似文献   

9.
This article proposes a unified method to estimation of group action by using the inverse Fourier transform of the input state. The method provides optimal estimation for commutative and non-commutative groups with and without energy constraint. The proposed method can be applied to projective representations of non-compact groups as well as of compact groups. This paper addresses the optimal estimation of \({{\mathbb R}}\), U(1), SU(2), SO(3), and \({{\mathbb R}^2}\) with Heisenberg representation under a suitable energy constraint.  相似文献   

10.
11.
We characterize the absolutely continuous spectrum of the one-dimensional Schrödinger operators \({h = -\Delta + v}\) acting on \({\ell^2(\mathbb{Z}_+)}\) in terms of the limiting behaviour of the Landauer–Büttiker and Thouless conductances of the associated finite samples. The finite sample is defined by restricting h to a finite interval \({[1, L] \cap \mathbb{Z}_+}\) and the conductance refers to the charge current across the sample in the open quantum system obtained by attaching independent electronic reservoirs to the sample ends. Our main result is that the conductances associated to an energy interval \({I}\) are non-vanishing in the limit \({L \to \infty}\) iff \({{\rm sp}_{\rm ac}(h) \cap I \neq \emptyset}\). We also discuss the relationship between this result and the Schrödinger Conjecture (Avila, J Am Math Soc 28:579–616, 2015; Bruneau et al., Commun Math Phys 319:501–513, 2013).  相似文献   

12.
In previous papers, Mitter (J Stat Phys 163:1235–1246, 2016; Erratum: J Stat Phys 166:453–455, 2017; On a finite range decomposition of the resolvent of a fractional power of the Laplacian, http://arxiv.org/abs/1512.02877), we proved the existence as well as regularity of a finite range decomposition for the resolvent \(G_{\alpha } (x-y,m^2) = ((-\Delta )^{\alpha \over 2} + m^{2})^{-1} (x-y) \), for \(0<\alpha <2\) and all real m, in the lattice \({{\mathbb Z}}^{d}\) for dimension \(d\ge 2\). In this paper, which is a continuation of the previous one, we extend those results by proving the existence as well as regularity of a finite range decomposition for the same resolvent but now on the lattice torus \({{\mathbb Z}}^{d}/L^{N+1}{{\mathbb Z}}^{d} \) for \(d\ge 2\) provided \(m\ne 0\) and \(0<\alpha <2\). We also prove differentiability and uniform continuity properties with respect to the resolvent parameter \(m^{2}\). Here L is any odd positive integer and \(N\ge 2\) is any positive integer.  相似文献   

13.
A bi-Hamiltonian structure is a pair of Poisson structures \({{\mathcal P}}\), \({{\mathcal Q}}\) which are compatible, meaning that any linear combination \({\alpha {\mathcal P} + \beta {\mathcal Q}}\) is again a Poisson structure. A bi-Hamiltonian structure \({({\mathcal P}, {\mathcal Q})}\) is called flat if \({{\mathcal P}}\) and \({{\mathcal Q}}\) can be simultaneously brought to a constant form in a neighborhood of a generic point. We prove that a generic bi-Hamiltonian structure \({({\mathcal P}, {\mathcal Q})}\) on an odd-dimensional manifold is flat if and only if there exists a local density which is preserved by all vector fields Hamiltonian with respect to \({{\mathcal P}}\), as well as by all vector fields Hamiltonian with respect to \({{\mathcal Q}}\).  相似文献   

14.
In this paper, we consider families of operators \({\{x_r\}_{r \in \Lambda}}\) in a tracial C*-probability space \({({\mathcal{A}}, \varphi)}\) , whose joint *-distribution is invariant under free complexification and the action of the hyperoctahedral quantum groups \({\{H_n^+\}_{n \in \mathbb {N}}}\) . We prove a strong form of Haagerup’s inequality for the non-self-adjoint operator algebra \({{\mathcal{B}}}\) generated by \({\{x_r\}_{r \in \Lambda}}\) , which generalizes the strong Haagerup inequalities for *-free R-diagonal families obtained by Kemp–Speicher (J Funct Anal 251:141–173, 2007). As an application of our result, we show that \({{\mathcal{B}}}\) always has the metric approximation property (MAP). We also apply our techniques to study the reduced C*-algebra of the free unitary quantum group \({U_n^+}\) . We show that the non-self-adjoint subalgebra \({{\mathcal{B}}_n}\) generated by the matrix elements of the fundamental corepresentation of \({U_n^+}\) has the MAP. Additionally, we prove a strong Haagerup inequality for \({{\mathcal{B}}_n}\) , which improves on the estimates given by Vergnioux’s property RD (Vergnioux in J Oper Theory 57:303–324, 2007).  相似文献   

15.
We put independent model dynamical constraints on the net electric charge Q of some astronomical and astrophysical objects by assuming that their exterior spacetimes are described by the Reissner-Nordström, metric, which induces an additional potential \({U_{\rm RN} \propto Q^2 r^{-2}}\). From the current bounds \({\Delta \dot \varpi}\) on any anomalies in the secular perihelion rate \({\dot \varpi}\) of Mercury and the Earth–mercury ranging Δρ, we have \({\left|Q_{\odot}\right| \lesssim 1-0.4 \times 10^{18}\ {\rm C}}\). Such constraints are ~60–200 times tighter than those recently inferred in literature. For the Earth, the perigee precession of the Moon, determined with the Lunar Laser Ranging technique, and the intersatellite ranging Δρ for the GRACE mission yield \({\left|Q_{\oplus} \right| \lesssim 5-0.4 \times 10^{14}\ {\rm C}}\). The periastron rate of the double pulsar PSR J0737-3039A/B system allows to infer \({\left|Q_{\rm NS} \right| \lesssim 5\times 10^{19}\ {\rm C}}\). According to the perinigricon precession of the main sequence S2 star in Sgr A*, the electric charge carried by the compact object hosted in the Galactic Center may be as large as \({\left|Q_{\bullet} \right| \lesssim 4\times 10^{27} \ {\rm C}}\). Our results extend to other hypothetical power-law interactions inducing extra-potentials \({U_{\rm pert} = \Psi r^{-2}}\) as well. It turns out that the terrestrial GRACE mission yields the tightest constraint on the parameter \({\Psi}\), assumed as a universal constant, amounting to \({|\Psi| \lesssim 5\times 10^{9}\ {\rm m^4\ s^{-2}}}\).  相似文献   

16.
We introduce ‘braidability’ as a new symmetry for infinite sequences of noncommutative random variables related to representations of the braid group \({\mathbb{B}_{\infty}}\) . It provides an extension of exchangeability which is tied to the symmetric group \({\mathbb{S}_{\infty}}\) . Our key result is that braidability implies spreadability and thus conditional independence, according to the noncommutative extended de Finetti theorem [Kös08]. This endows the braid groups \({\mathbb{B}_{n}}\) with a new intrinsic (quantum) probabilistic interpretation. We underline this interpretation by a braided extension of the Hewitt-Savage Zero-One Law. Furthermore we use the concept of product representations of endomorphisms [Goh04] with respect to certain Galois type towers of fixed point algebras to show that braidability produces triangular towers of commuting squares and noncommutative Bernoulli shifts. As a specific case we study the left regular representation of \({\mathbb{B}_{\infty}}\) and the irreducible subfactor with infinite Jones index in the non-hyperfinite I I 1-factor L \({(\mathbb{B}_{\infty})}\) related to it. Our investigations reveal a new presentation of the braid group \({\mathbb{B}_{\infty}}\) , the ‘square root of free generator presentation’ \({\mathbb{F}^{1/2}_{\infty}}\) . These new generators give rise to braidability while the squares of them yield a free family. Hence our results provide another facet of the strong connection between subfactors and free probability theory [GJS07]; and we speculate about braidability as an extension of (amalgamated) freeness on the combinatorial level.  相似文献   

17.
We study the off-diagonal decay of Bergman kernels \({\Pi_{h^k}(z,w)}\) and Berezin kernels \({P_{h^k}(z,w)}\) for ample invariant line bundles over compact toric projective kähler manifolds of dimension m. When the metric is real analytic, \({P_{h^k}(z,w) \simeq k^m {\rm exp} - k D(z,w)}\) where \({D(z,w)}\) is the diastasis. When the metric is only \({C^{\infty}}\) this asymptotic cannot hold for all \({(z,w)}\) since the diastasis is not even defined for all \({(z,w)}\) close to the diagonal. Our main result is that for general toric \({C^{\infty}}\) metrics, \({P_{h^k}(z,w) \simeq k^m {\rm exp} - k D(z,w)}\) as long as w lies on the \({\mathbb{R}_+^m}\)-orbit of z, and for general \({(z,w)}\), \({{\rm lim\,sup}_{k \to \infty} \frac{1}{k} {\rm log} P_{h^k}(z,w) \,\leq\, - D(z^*,w^*)}\) where \({D(z, w^*)}\) is the diastasis between z and the translate of w by \({(S^1)^m}\) to the \({\mathbb{R}_+^m}\) orbit of z. These results are complementary to Mike Christ’s negative results showing that \({P_{h^k}(z,w)}\) does not have off-diagonal exponential decay at “speed” k if \({(z,w)}\) lies on the same \({(S^1)^m}\)-orbit.  相似文献   

18.
19.
Given a fusion category \({\mathcal C}\) and an indecomposable \({\mathcal C}\)-module category \({\mathcal M}\), the fusion category \({\mathcal C}^*_{_{{\mathcal M}}}\) of \({\mathcal C}\)-module endofunctors of \({\mathcal M}\) is called the (Morita) dual fusion category of \({\mathcal C}\) with respect to \({\mathcal M}\). We describe tensor functors between two arbitrary duals \({\mathcal C}^*_{_{{\mathcal M}}}\) and \({\mathcal D}^*_{\mathcal N}\) in terms of data associated to \({\mathcal C}\) and \({\mathcal D}\). We apply the results to G-equivariantizations of fusion categories and group-theoretical fusion categories. We describe the orbits of the action of the Brauer–Picard group on the set of module categories and we propose a categorification of the Rosenberg–Zelinsky sequence for fusion categories.  相似文献   

20.
We consider the X(3872) resonance as a \(J^\mathrm{{PC}}=1^{++}\) \(D\bar{D}^*\) hadronic molecule. According to heavy quark spin symmetry, there will exist a partner with quantum numbers \(2^{++}\), \(X_{2}\), which would be a \(D^*\bar{D}^*\) loosely bound state. The \(X_{2}\) is expected to decay dominantly into \(D\bar{D}\), \(D\bar{D}^*\) and \(\bar{D} D^*\) in d-wave. In this work, we calculate the decay widths of the \(X_{2}\) resonance into the above channels, as well as those of its bottom partner, \(X_{b2}\), the mass of which comes from assuming heavy flavor symmetry for the contact terms. We find partial widths of the \(X_{2}\) and \(X_{b2}\) of the order of a few MeV. Finally, we also study the radiative \(X_2\rightarrow D\bar{D}^{*}\gamma \) and \(X_{b2} \rightarrow \bar{B} B^{*}\gamma \) decays. These decay modes are more sensitive to the long-distance structure of the resonances and to the \(D\bar{D}^{*}\) or \(B\bar{B}^{*}\) final state interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号