首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors introduce a method for spatially arranged DNA immobilization on 10-nm gold nanoparticles (GNP) deposited on a silicon substrate carrying nanogapped interdigitated electrodes. The GNPs are covalently bound to the surface via silane chemistry, and the single steps of fabrication are monitored by FTIR spectroscopy and atomic force microscopy. This GNP deposition technique is shown to reduce the size of the nanogaps to 130 nm. FTIR also was used to monitor the immobilization of DNA on the surface of the interdigitated electrodes. This method allows DNA to be immobilized in a uniform and homogenous way. The utility of the method is demonstrated by immobilizing probe DNA on the surface and detecting target DNA specific for the human papilloma virus via fluorescence with a detection limit as low as 1 pM. In our perception, this method for GNP-mediated DNA immobilization enables high-performance sensing of a wide range of target (analyte) DNA.
Graphical abstract Schematic presentation of gold nanoparticle-mediated and spatially resolved deposition of DNA on nano-gapped interdigitated electrodes. The method was applied to the chemiluminescent determination of the human papillomavirus
  相似文献   

2.
An efficient approach is demonstrated for preparing particles consisting of a silver core and a shell of molecularly imprinted polymer (Ag@MIP). The MIP is prepared by using bisphenol A (BPA) as the template and 4-vinylpyridine as the functional monomer. The Ag@MIP fulfills a dual function in that the silver core acts as a SERS substrate, while the MIP allows for selective recognition of BPA. The Ag@MIP is characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, thermogravimetric analysis and Raman spectroscopy. The Raman intensity of Ag@MIP is higher than that of bare silver microspheres. The detection limit for BPA is as low as 10?9 mol·L?1.
Graphical abstract Schematic illustration of the preparation of silver microspheres coated with a molecularly imprinted polymer (Ag@MIPs) for detecting bisphenol A (BPA) by surface enhanced Raman scattering (SERS).
  相似文献   

3.
The authors report that the peroxidase-like activity of Au@Pt core-shell nanohybrids (Au@PtNHs) is selectively inhibited by cysteine. This finding has led to  a highly sensitive colorimetric assay for cysteine that is based on the nanohybrid-catalyzed oxidation of TMB by H2O2 to form a blue product. The method has a detection limit of 5.0 nM and a linear range from 10 nM to 20 μM. The assay is highly selective over other amino acids. It was successfully applied to the determination of cysteine in an injection containing a mixture of amino acids.
Graphical abstract The peroxidase-like activity of Au@Pt core-shell nanohybrids (Au@PtNHs) is selectively inhibited by cysteine, enabling the determination of cysteine.
  相似文献   

4.
Hybrids consisting of silver nanoparticles (in varying fractions) and of TiOx/ZnO were prepared via top-down ion beam sputtering (IBS) deposition on silicon substrates. The deposited nanomaterials were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. It is shown that such composites represent a viable substrate for use in both surface enhanced Raman spectroscopy (SERS) and surface enhanced infrared absorption spectroscopy (SEIRAS), as exemplarily shown for crystal violet as the model analyte. The C-H bending mode at about 1181 cm?1 and the C-N vibration at 1361 cm?1 observed in the SERS and SEIRAS spectra, respectively, have been used as analytical signal. The substrate consisting of TiOx NPs with 33% fraction of silver provides the strongest enhancement in SERS (up to 10,000-fold), while TiOx/AgNPs with thickness of 2 and 1 nm in ion beam sputtering, respectively, provides the best sensitivity in SEIRAS. The substrates also display photocatalytic activity as shown by the degradation of adsorbed crystal violet under ultraviolet irradiation.
Graphical abstract Schematic of the preparation of hybrid substrates consisting of Ag and TiOx/ZnO nanoparticles via ion beam sputtering deposition. They were applied in both surface enhanced Raman and surface enhanced infrared absorption spectroscopies using crystal violet as model analyte, showing enhancements up to >10,000-fold in Raman.
  相似文献   

5.
A new method is described for the determination of the pesticide λ-cyhalothrin (LC). It combines SERS detection with molecular imprinting and largely improves selectivity. A multilayer surface imprinted nanocomposite was synthesized in two steps on a nanostructure of type SiO2@rGO@Ag acting as a substrates. Firstly, the surface of the SiO2@rGO@Ag composite was modified with self-polymerized dopamine. Secondly, surface-initiated polymerization was carried out to prepare a molecularly imprinted polymer (MIP) using LC as the template. The use of this SiO2@rGO@Ag-MIP allows for excellent SERS based detection and has high selectivity for LC. The Raman intensity and LC concentration present perfect linear relationship between 10?5 to 10?9 mol L?1 and the detection limit is 3.8×10?10 mol L?1. All the procedures are conducted in aqueous or ethanol solution.
Graphical abstract Schematic of a new method for determination of the pesticide λ-cyhalothrin. It combines SERS detection with molecular imprinting and largely improves selectivity. A multilayer surface imprinted nanocomposite was synthesized in two steps on a nanostructure of type SiO2@rGO@Ag acting as a substrates.
  相似文献   

6.
A simple method is described for the determination of copper(II) ions based on the cathodic electrochemiluminescence (ECL) of lucigenin which is quenched by Cu(II). The blue ECL is best induced at ?0.45 V (vs. Ag/AgCl) at a scan rate of 50 mV·s?1. Under optimum conditions, the calibration plot is linear in the 3.0 to 1000 nM Cu(II) concentration range. The limit of detection is 2.1 nM at a signal-to-noise ratio of 3. Compared to other analytical methods, the one presented here is simple, fast, selective and cost-effective. It has been successfully applied in the analysis of copper ions in spiked tap water samples with recoveries ranging from 93.0% (at 50 nM concentration) to 105.7% (at 150 nM).
Graphical abstract The inhibitory effect of Cu(II) on the cathodic electrochemiluminescence of lucigenin enables determination of Cu(II) with a 2.1 nM detection limit.
  相似文献   

7.
A composite consisting of chitosan containing azidomethylferrocene covalently immobilized on sheets of reduced graphene oxide was drop-casted on a polyester support to form a screen-printed working electrode that is shown to enable the determination of nitrite by cyclic voltammetry and chronoamperometry. Both reduction and oxidation of nitrite can be accomplished due to the high electron-transfer rate of this electrode. Under optimal experimental conditions (i.e. an applied potential of 0.7 V vs. Ag/AgCl in pH 7.0 solution), the calibration plot is linear in the 2.5 to 1450 μM concentration range, with an ~0.35 μM limit of detection (at a signal-to-noise ratio of 3). The sensor was successfully applied to the determination of nitrite in spiked mineral water samples, with recoveries ranging between 95 and 101 %.
Graphical abstract We describe the design of ferrocene-functionalized reduced graphene oxide electrode and its electrocatalytic properties towards the determination of nitrite. Compared to a reduced graphene oxide electrode, the sensor exhibits enhanced electrocatalytic activity towards both oxidation and reduction of nitrite.
  相似文献   

8.
We have prepared graphene quantum dot-europium(III) complex composites by noncovalently connecting chelating ligands dibenzoylmethane (DBM) and 1,10-phenanthroline (Phen) with graphene quantum dots (GQDs) first, followed by coordination to Eu(III). The resulting composites are well water-soluble and display red fluorescence of high color purity. The composites were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Aqueous solutions of the composites under 365 nm excitation display fluorescence with a peak at 613 nm and a quantum yield as high as 15.5 %. The good water solubility and stable photoluminescence make the composites very different from other Eu(III)-based coordination complexes. The composites are cell viable and can be used to label both the cell membrane and the cytoplasm of MCF-7 cells. They are also shown to act as bioprobes for in-vivo localization of tumorous tissue. In our perception, such composites are expected to possess wide scope because of the many functionalizations that are possible with GQDs.
Graphical abstract Synthesis of red fluorescent graphene quantum dot-europium complex composites for use in bioimaging.
  相似文献   

9.
The authors describe a method for the fabrication of a nanohybrid composed of carbon dots (C-dots) and gold nanoparticles (AuNPs) by in-situ reduction of C-dots and hydroauric acid under alkaline conditions. The process does not require the presence of surfactant, stabilizing agent, or reducing agent. The hybrid material was deposited in a glassy carbon electrode (GCE), and the modified GCE exhibited good electrocatalytic activity toward the oxidation of nitrite due to the synergistic effects between carbon dots and AuNPs. The findings were used to develop an amperometric sensor for nitrite. The sensor shows a linear response in the concentration range from 0.1 μmol?L-1 to 2 mmol?L-1 and a low detection limit of 0.06 μmol?L-1 at the signal-to-noise ratio of 3.
Graphical abstract Fabrication, characterization and electrochemical behavior of a glassy carbon electrode modifid with carbon dots and gold nanoparticles for sensing nitrite in lake water.
  相似文献   

10.
The authors report on a robust method for the synthesis of gold nanorods (AuNRs) with tunable dimensions and longitudinal surface plasmon resonance. The method relies on seed-mediated particle growth in the presence of benzalkonium chloride (BAC) in place of the widely used surfactant cetyltrimethyl ammonium bromide (CTAB). Uniform AuNRs were obtained by particle growth in solution, and BAC is found to stabilize the AuNRs for >1 year. The SERS activity of the resulting AuNRs is essentially identical to that of CTAB-protected nanorods. The SERS activity of the BAC protected nanorods was applied to the quantitative analysis of potato virus X (PVX). The calibration plot for PVX is linear in the 10 to 750 ng?mL?1 concentration range, and the detection limit is 2.2 ng?mL?1.
Graphical abstract SERS-active gold nanorods (AuNRs) have been prepared by using benzalkonium chloride as stabilization agent. Effects of chemical parameters on AuNRs have been explored and AuNRs were used in quantitative analysis of potato virus X (PVX).
  相似文献   

11.
A method is described for the determination of the polarity of mixed organic solvents by using the fluorescent probe Hostasol Red (HR) desposited on the outer surface of nanosized zeolite L. Organic solvents and their mixtures can be roughly classified according to their polarity with bare eyes and fluorometrically. Emission peaks range from 520 to 640 nm. Some solvents act as quenchers. The method is studied with series of protic and nonprotic solvents, and with selected mixtures of organic solvents.
Graphical abstract The dye Hostalene Red adsorbed on nanosized zeolite shows strong fluorescence solvatochromism. This can be exploited to quickly assess the polarity of solvents and solvent mixtures.
  相似文献   

12.
This review (with 121 references) gives a summary on recent advances in the use of nanomaterials for the optical determination of dopamine. It includes a brief overview of the clinical significance of dopamine followed by a discussion on the recent advances in various nanomaterial-based distinctive optical spectroscopic methods such as (a) colorimetry and spectrophotometry, (b) surface-enhanced Raman spectroscopy (SERS), (c) fluorescence spectrometry, and (d) electrochemiluminescence (ECL) spectrometry. All sections are further divided into subsections based on the type of nanomaterial used, and their advantages and disadvantages are discussed. A discussion on the validity of the nanomaterial-based optical detection of dopamine for human samples is also included. This review concludes with highlights of current challenges of nanomaterial-based optical sensors and an outlook on future perspectives.
Graphical abstract Schematic of the use of various nanomaterials in the detection of dopamine based on colorimetry, spectrophotometry, surface-enhanced Raman spectroscopy, fluorescence and electrochemiluminescence.
  相似文献   

13.
Various kinds of nanomaterials have been described in recent years that represent stable and low-cost alternatives to biomolecules (such as enzymes) for use in (bio)analytical methods. The materials typically include, metal/metal oxides, metal complexes, nanocomposites, porphyrins, phthalocyanines, smart polymers, and carbonaceous nanomaterials. Due to their biomimetic and other properties, such nano-materials may replace natural enzymes in chemical sensors, biosensors, and in various kinds of bioassays. This overview (with 252 references) highlights the analytical potential of such nanomaterials. It is divided into sections on (a) the types of nanomaterials according to their intrinsic nature, (b) non-enzymatic sensor designs (including electrochemical, colorimetric, fluorescent and chemiluminescent methods), and (c), applications of non-enzymatic sensors in the biomedical, environmental and food analysis fields. We finally address current challenges and future directions.
Graphical abstract This review discusses different types of nanomaterials, which are explored as a potential biomimetic material to replace the natural enzyme in the field of biosensors, and have found widespread applications in biomedical, food and environmental analysis.
  相似文献   

14.
This review with 111 references covers recent progress made in the field of strip tests and spot tests for quantitative determination of mercury(II) ions. Following an introduction into the subject and the fundamentals of colorimetric determination, we first cover methods for synthesis and characterization of gold and silver nanoparticles (NPs) and give representative examples. The next sections cover (a) methods for dye-based detection of Hg(II) ions (categorized into azo, acridine, anthraquinone, di?/triarylmethane, nitro/nitroso, cyanine, triazole, oxazine, thiazine, dioxazine and xanthene dyes), and (b) techniques for immobilization of active agents (NPs and indicators) on the solid support. A conclusion section discusses current challenges and trends in future research.
Graphical abstract This review summarizes recent progress made in the field of strip tests and spot tests for quantitative determination of mercury(II) ions by using gold and silver nanoparticles (NPs).
  相似文献   

15.
This review (with (318) refs) describes progress made in the design and synthesis of morphologically different metal oxide nanoparticles made from iron, manganese, titanium, copper, zinc, zirconium, cobalt, nickel, tungsten, silver, and vanadium. It also covers respective composites and their function and application in the field of electrochemical and photoelectrochemical sensing of chemical and biochemical species. The proper incorporation of chemical functionalities into these nanomaterials warrants effective detection of target molecules including DNA hybridization and sensing of DNA or the formation of antigen/antibody complexes. Significant data are summarized in tables. The review concludes with a discussion or current challenge and future perspectives.
Graphical abstract ?
  相似文献   

16.
This review (with 85 refs.) summarizes the recent literature on the adsorption of common aromatic pollutants by using modified metal-organic frameworks (MOFs). Four kinds of aromatic pollutants are discussed, namely benzene homologues, polycyclic aromatic hydrocarbons (PAHs), organic dyes and their intermediates, and pharmaceuticals and personal care products (PPCPs). MOFs are shown to be excellent adsorbents that can be employed to both the elimination of pollutants and to their extraction and quantitation. Adsorption mechanisms and interactions between aromatic pollutants and MOFs are discussed. Finally, the actual challenges of existence and the perspective routes towards future improvements in the field are addressed.
Graphical abstract Recent advance on adsorption of common aromatic pollutants including benzene series, polycyclic aromatic hydrocarbons, organic dyes and their intermediates, pharmaceuticals and personal care products by metal-organic frameworks.
  相似文献   

17.
The authors describe an electrochemical sensor for the neonicotinoid insecticide imidacloprid (IMI) based on Pt-In catalytic nanocomposite film and Bromophenol blue amplification. The Pt-In nanocomposite film was deposited on the surface of a modified glassy carbon electrode. The composite molecularly imprinted polymer (MIP) was prepared by electro-polymerization using bromophenol blue doped o-aminophenol as functional monomer and 4-tert-butylcalix[6]arene-IMI supramolecular inclusion complex as template molecule. The experimental results showed that the current intensity of IMI was clearly amplified in the potential range from ?0.3 to ?1.8 V, because of the double amplification, based on the Pt-In film and Bromophenol blue catalysis. Moreover, the double recognition ability of the sensor, which relied on the MIP and the vacuum structure of 4-tert-butylcalix[6]arene, effectively increased the specific recognition performance. The feasibility of its practical applications has been demonstrated by the analysis of vegetable samples.
Graphical abstract A supramolecular imprinted electrochemical sensor for imidacloprid determination was prepared based on Pt-In nanocomposite film and bromophenol blue amplification. Because of the advantages of the specific recognition sites in MIPs and supramolecular chemistry, the sensor showed good selectivity for imidacloprid.
  相似文献   

18.
The authors report on a simple strategy for sensitive determination of the activity of terminal deoxynucleotidyl transferase (TdT) using copper nanoclusters (CuNCs) as fluorescent probes. TdT-polymerized long chain AT-rich DNA serves as a template for the synthesis of the CuNCs, and TdT activity is detected fluorometrically at excitation/emission wavelengths of 340/570 nm. The protocol relies on the target-triggered formation of dsDNA polymers and in-situ formation of CuNCs. The calibration plot is linear in the 0.7 to 14 U L?1 activity range, with a 60 mU L?1 detection limit (at a signal-to-noise ratio of 3). The protocol was applied to determine TdT activity in acute lymphatic leukemia cells. This approach is selective, simple, convenient and cost-efficient because a complex DNA sequence is not required. In our perception, the method provides a viable new platform for monitoring the activity and inhibition of TdT.
Graphical abstract Based on the target-triggered formation of dsDNA polymers and in-situ formation of CuNCs with strong fluorescence, a turn-on fluorescence assay for TdT activity is presented.
  相似文献   

19.
Cuprous oxide (Cu2O) thin films have been deposited onto fluorine doped tin oxide (FTO) glass substrates by using electrochemical route. The structural, morphological, and chemical composition of the deposited films have been studied by using X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive x-ray spectroscopy (EDAX) techniques respectively. The optical studies have been carried out by using UV-Vis spectroscopy. The effect of potential, pH and bath temperature onto absorption and band gap of Cu2O thin films have been studied. The highest sensitivity 6.25 mA·mM·cm- 2 is observed for the thin films which shows glucose concentration 7 mM in 0.1 M NaOH solution. The results indicates Cu2O is promising material for glucose sensor with high sensitivity, high stability, and repeatability.
Graphical abstract The surface morphology of Cu2O thin films was found to be tip-truncated octahedral. The films were  prepared by electrodeposition. The Cu2O thin films were used to construct low cost, highly sensitive and stable glucose sensor.
  相似文献   

20.
The authors describe a fluorescent probe for sulfide that is based on carboxy-functionalized semiconducting polymer dots (P-dots). The dots were prepared from carboxy-functionalized poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-2,1′-3-thiadiazole)] (referred to as COOH-PFBT) via co-precipitation. The P-dots aggregate on addition of Cu(II) ions and their green fluorescence (with excitation/emission peaks at 455/540 nm) is then quenched. Fluorescence is restored on addition of sulfide to the aggregates due to the formation of CuS. This quenching-recovery (“off-on”) mechanism forms the basis for a new sulfide detection scheme. Fluorescence increases linearly in the 1.25 to 75.0 μM sulfide concentration range, with a 0.45 μM detection limit. Good selectivity over other anions is demonstrated. The method shows recoveries ranging between 98.6% and 105.7% when applied to the determination of sulfide in spiked real water samples.
Graphical abstract Schematic of a fluorescent off-on sensor for (hydrogen) sulfide based on the use of semiconducting polymer dots (PFBT-COOH) whose fluorescene is quenched by Cu(II) ion but restored on addition of (hydrogen) sulfide.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号