首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new Schiff base has been synthesized from 4-aminoantipyrine and 3-formylsalicylic acid. The ligand has a dianionic tetradentate compartmental OONO donor system. The cobalt(II), nickel(II), copper(II) and dioxouranium(VI) complexes exist in phenolato-bridged dinuclear species, while palladium(II) gives a mononuclear complex with free –COOH groups. The complexes have been characterized by elemental analyses, i.r., u.v.-vis, thermal and magnetic measurements.  相似文献   

2.
New Schiff base complexes of zinc(II), copper(II), nickel(II), and vanadium(IV) were synthesized using the Schiff base ligand formed by the condensation of 2-aminoethanethiol and 2-hydroxy-1-naphthaldehyde. The tetradentate Schiff base ligand N,N´-(3,4-dithiahexane-1,6-diyl)bis(2-hydroxy-1-naphthaleneimine), containing a disulfide bond, was coordinated to the metal(II) ions through the two azomethine nitrogen atoms and two deprotonated phenolic oxygens of two different ligands which was connected to each other by sulfur-sulfur bond. The molar conductivity values of complexes in DMSO solvent implied the presence of nonelectrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were studied in dimethylsulfoxide. The Schiff base ligand and its complexes were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of tetradentate Schiff base ligand was characterized by single crystal X-ray diffraction. The Schiff base ligand was contained disulfide bond. Furthermore, the binding interaction of these complexes with calf thymus DNA (CT-DNA) was investigated by different methods.  相似文献   

3.
A new Schiff base, {1-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-4-phenyl-2-thioxo-1, 2-dihydro-pyrimidin-5-yl}-phenyl-methanone, has been synthesized from N-amino pyrimidine-2-thione and 2-hydroxynaphthaldehyde. Metal complexes of the Schiff base were prepared from acetate/chloride salts of Cu(II), Co(II), Ni(II), Zn(II), and Cd(II) in methanol. The chemical structures of the Schiff-base ligand and its metal complexes were confirmed by elemental analyses, IR, 13C-NMR, 1H-NMR, API-ES, UV-Visible spectroscopy, magnetic susceptibility, and thermogravimetric analyses. The electronic spectral data and magnetic moment measurements suggest mononuclear octahedral and mononuclear or binuclear square planar structures for the metal complexes. In light of these results, it was suggested that this ligand coordinates to each metal atom by hydroxyl oxygen, azomethine nitrogen, and thione sulfur to form octahedral complexes with Cd(II) and Zn(II).  相似文献   

4.
The condensation of 2-pyridinecarboxaldehyde N-oxide and triethylenetetramine yields a product with two imidazolidine rings, as proven by a solid-state X-ray structure analysis as well as by NMR solution spectra. This ligand, L1, undergoes a ring-opening reaction on complex formation with Cu(II), yielding [CuL2]2+ where L2 functions as a pentadentate ligand, containing only one imidazolidine ring. On complexation with Zn(II) and Fe(III), both rings are opened and the complexes [ZnL3]2+ and [FeL3]3+ with a hexadentate L3 ligand are formed. The recrystallization of [ZnL3]2+ from DMSO solution results in the complex [ZnL1(DMSO)2]2+ in which L1 behaves as a tetradentate ligand. Thus L1, L2, and L3 are structural isomers with two, one, or no imidazolidine rings, as confirmed by X-ray structure analyses. The intramolecular ring formation is the result of the nucleophilic addition of the N(amino) group to the electrophilic sp2-hybridized -HC delta+=N site. Owing to the absence of the chelate effect on the sp3-hybridized carbon atom belonging to the imidazolidine ring, the ring opening is facilitated and readily observed upon complex formation with Cu(II), Zn(II), and Fe(III).  相似文献   

5.
Complex formation of the two tetraamine ligands (2S,3S)-1,2,3,4-tetraaminobutane (threo-tetraaminobutane, ttab) and (2R,3S)-1,2,3,4-tetraaminobutane (erythro-tetraaminobutane, etab) with Co(III), Ni(II), Cu(II), and Pd(II) was investigated in aqueous solution and in the solid state. For Ni(II) and Cu(II), the pH-dependent formation of a variety of species [Mn(II)xLyHz](2x+z)+ was established by potentiometric titrations and UV/Vis spectroscopy. In sufficiently acidic solutions the divalent cations formed a mononuclear complex with the doubly protonated ligand of composition [M(H2L)]4+. An example of such a complex was characterized in the crystal structure of [Pd(H2ttab)Cl2]Cl2.H2O. If the metal cation was present in excess, increase of pH resulted in the formation of dinuclear complexes [M2L]4+. Such a species was found in the crystal structure of [Cu2(ttab)Br4].H2O. Excess ligand, on the other hand, lead to the formation of a series of mononuclear bis-complexes [Mq(HxL)(HyL)](q+x+y)+. The crystal structure of [Co(Hetab)2][ZnCl4]2Cl. H2O with the inert, trivalent Co(III) center served as a model to illustrate the structural features of this class of complexes. By using an approximately equimolar ratio of the ligand and the metal cation, a variety of polymeric aggregates both in dilute aqueous solution and in the solid state were observed. The crystal structure of Cu2(ttab)3Br4, which exhibits a two-dimensional, infinite network, and that of [Ni8(ttab)12]Br16.17.5H2O, which contains discrete chiral [Ni8(ttab)12]16+ cubes with approximate T symmetry, are representative examples of such polymers. The energy of different diastereomeric forms of such complexes with the two tetraamine ligands were analyzed by means of molecular mechanics calculations, and the implications of these calculations for the different structures are discussed.  相似文献   

6.
Owing to the presence of multiple donor atoms such as N(1)H, C(2)SH, N(3), C(4)O, and CNC in the newly synthesized antimetabolite, namely, 5-dimethylaminomethyl-2-thiouracil, preferences of the hetero-atoms for coordination with metal ions like Cu(II), Zn(II), Cd(II), and Hg(II) were explored. The complexes isolated were characterized by chemical analysis and spectroscopic techniques. The ligand behaves as a bidentate/tetradentate chelating ligand. Invariably in all the complexes, one of the donor atoms is the soft C(2)SH. The kinetic and thermodynamic parameters for the thermal decomposition of the metal chelates were evaluated using (Coats–Redfern) and (Madhusudanan–Krishnan–Ninan) equations. The antimicrobial studies show that the copper(II) complexes are more active than the other complexes.  相似文献   

7.
Palladium(II) complexes with alkylated dipyrrolylmethene (Hdpm) and its bis-derivative, biladienea, c (H2bd), of the composition [Pd(dpm)2] and [Pd(bd)] were synthesized and were characterized by IR, UVVIS, and NMR spectroscopy. It was shown that the nature of the solvent has almost no effect on the spectral characteristics of the complexes due to the square-planar configuration of the coordination nodes in them and, respectively, the impossibility of further coordination. From the results of the kinetic study of the complexes stability to the action of acids in the C6H6-CCl3COOH mixtures it was concluded that the Pd(II) complexes are much more stable compared to the other d-metal dipyrrolylmethenates. Kinetic manifestation of polychelate effect was observed consisting in a sharp decrease in the dissociation rate of the palladium(II) complex with biladiene as compared to that with dipyrrolylmetene.  相似文献   

8.
A new Schiff base ligand was prepared by condensation of 2-hydroxy-4-methoxybenzaldehyde with 1,2-propanediamine. The ligand and its metal complexes were characterized by elemental analysis, FT-IR, 1H and 13C NMR, magnetic moment, molar conductance, UV-Vis, SEM and thermal analysis (TGA). The molar conductance measurements indicated that all the metal complexes were non-electrolytes. IR spectra showed that ligand (L) behaves as a neutral tetradentate ligand and binds to the metal ions by the two azomethine nitrogen atoms and two phenolic oxygen atoms. The electronic absorption spectra and magnetic susceptibility measurements indicated square planar geometry for the Ni(II) and Cu(II) complexes while other metal complexes showed tetrahedral geometry. Also the surface morphology of the complexes was studied by SEM.  相似文献   

9.
《中国化学会会志》2017,64(3):261-281
A new Schiff base was prepared from the reaction of 4,4′‐methylenedianiline with 2‐benzoylpyridine in 1:2 molar ratio, as well as its different metal chelates. The structures of the ligand and its metal complexes were studied by elemental analyses, spectroscopic methods (infrared [IR ], ultraviolet–visible [UV –vis], 1H nuclear magnetic resonance [NMR ], electron spin resonance [ESR ]), magnetic moment measurements, and thermal studies. The ligand acts as tetradentate moiety in all complexes. Octahedral geometry was suggested for Mn(II ), Cu(II ), Cr(III ), and Zn(II ) chloride complexes and pentacoordinated structure and square planar geometry for Co(II ), Ni(II ), Cu(NO3 )2, CuBr2 , and Pd(II ) complexes. ESR spectra of copper(II ) complexes ( 4 )–( 6 ) at room temperature display rhombic symmetry for complex ( 4 ) and axial type symmetry for complexes ( 5 ) and ( 6 ), indicating ground state for Cu(II ) complexes. The derivative thermogravimetric (DTG ) curves of the ligand and its metal complexes were analyzed by using the rate equation to calculate the thermodynamic and kinetic parameters, which indicated strong binding of the ligand with the metal ion in some complexes. Also, some of these compounds were screened to establish their potential as anticancer agents against the human hepatic cell line Hep‐G2 . The obtained IC50 value of the copper(II ) bromide complex (4.34 µg/mL ) is the highest among the compounds studied.  相似文献   

10.
The reactions of nickel(II), copper(II), and zinc(II) acetate salts with a potentially tetradentate biphenyl-bridged bis(pyrrole-2-yl-methyleneamine) ligand yielded three complexes with different coordination geometries. X-ray crystal structural analysis reveals that in the nickel(II) complex each nickel is five-coordinate, distorted trigonal bipyramid. In the copper(II) complex, each copper is four-coordinate, between square planar and tetrahedral. In the zinc(II) complex, each zinc is four-coordinate with a distorted tetrahedral geometry and the molar ratio of the zinc and ligand is 1 : 2.  相似文献   

11.
The complexes of transition metal ions with an azamacrocyclic tetradentate nitrogen donor [N4] ligand viz. 2,6,12,16,21,22-hexaaza;3,5,13,15-tetramethyltricyclo[15.3.1.1(7-11)] docosa;1(21),2,5,7,9,11(22),12,15,17,19-decaene (L) have been synthesized. All the complexes were found to have general composition M(L)X2 [where M = manganese(II), cobalt(II), nickel(II) and copper(II) and X = Cl- & NO3-]. All the complexes are characterized by the elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic, EPR spectral and cyclic voltammetric studies. An octahedral geometry was assigned for Mn(II), Co(II) and Ni(II) complexes and tetragonal for Cu(II) complexes. The biological actions of the ligand and complexes have been screened in vitro against many bacteria and pathogenic fungi to study their comparative capacity to inhibit the growth.  相似文献   

12.
The helical sense of a mononuclear Co(II) complex with an amino acid-based chiral tetradentate ligand was dynamically inverted by changing the solvent component.  相似文献   

13.
Abstract

Monobasic tridentate Schiff base ligand having ONS donor sequence was prepared by condensing N-aminopyrimidine-2-thione with o-vanillin. The complexes were formed by reacting ligand and the metal acetates of Cu(II), Ni(II), Co(II), Mn(II), and Cd(II) in methanol to get a series of mononuclear and dinuclear complexes. The characterization of ligand and metal complexes were carried out by elemental analyses, conductivity measurements, magnetic susceptibility data, FTIR, UV-vis, NMR, and API-ES mass spectral data. The structure of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, API-ES mass spectral data and thermal gravitational analysis (TGA).

GRAPHICAL ABSTRACT   相似文献   

14.
Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO2(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV–vis, 1H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25 ± 1 °C and at 0.1 M KNO3 ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO2(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats–Redfern and Horowitz–Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H2O)4]·Cl2 and [Zn(LFX)(H2O)4]·Cl2 were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had been found to be inactive at lower concentration than 100 μg/ml.  相似文献   

15.
The activity of a Zn(II) complex of a tetradentate, tripodal ligand for catalyzing phosphodiester cleavage is enhanced 750-fold by introducing three hydrogen bond donors to the ligand. Inhibition studies show that the Zn-aqua complex is the kinetically active form and that it binds the transition state with a formal dissociation constant of 3 x 108 M-1. The effect of these ligand modifications on the transition-state affinity is comparable to the rate acceleration provided by the metal ion itself. Overall, this mononuclear complex is more active than the most reactive dinuclear Zn(II) complexes reported to date.  相似文献   

16.
Manganese(II), cobalt(II), nickel(II), and copper(II) complexes are synthesized with a novel tetradentate ligand, viz. 1,5,9,13-tetraaza-6,14-dioxo-8,16-diphenylcyclohexadecane (L) and characterized by the elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic, and EPR spectral studies. The molar conductance measurements of the complexes in DMSO correspond to be nonelectrolyte nature for Mn(II), Co(II), and Cu(II) whereas 1:2 electrolytes for Ni(II) complexes. Thus, these complexes may be formulated as [M(L)X(2)] and [Ni(L)]X(2), respectively (where M = Mn(II), Co(II), and Cu(II) and X = Cl- and NO(3-)). On the basis of IR, electronic, and EPR spectral studies an octahedral geometry has been assigned for Mn(II) and Co(II) complexes, square-planar for Ni(II) whereas tetragonal for Cu(II) complexes. The ligand and its complexes were also evaluated against the growth of bacteria and pathogenic fungi in vitro.  相似文献   

17.
The condensation reaction between 2-pyridinecarboxaldehyde and diethylenetriamine, 3-[(2-aminoethyl)amino]propylamine, and 3,3'-iminobis(propylamine) in a 2:1 molar ratio yields ligands that may be isolated exclusively in the dissymmetric (cyclic) isomeric forms L(A), L(B)/L(B*), and L(C). The template effect of a metal center (Fe(II), Ni(II), and Zn(II)) results in the ring opening of L(C) including one hexahydropyrimidine ring and one (long) propylene bridge. The resulting symmetric bis-Schiff base isomeric form L(C') is stabilized through pentacoordination, yielding [Fe(II)L(C')(NCS)](NCS) (3), [Ni(II)L(C')(NCS)](NCS) (6), and [Zn(II)L(C')(NCS)](NCS) (9). The same metal centers are too bulky to exert a template effect on L(A) including one imidazolidine ring and one (short) ethylene bridge. L(A) acts as a tetradentate ligand yielding [Fe(II)L(A)(NCS)2] (1), [Ni(II)L(A)(NCS)2] (4), and [Zn(II)L(A)(NCS)2] (7). The template effect of the metal center is selective toward the ligand L(B)/L(B*) including a hexahydropyrimidine (imidazolidine) ring and the shorter ethylene (longer propylene) bridge. The Fe(II) cation is small enough to exert a template effect, resulting in the ring opening of L(B)/L(B*). The resulting bis-Schiff base L(B') is stabilized through pentacoordination, yielding [Fe(II)L(B')(NCS)](NCS) (2). Ni(II) is too bulky to promote the ring opening of L(B)/L(B*): L(B) acts as a tetradentate ligand, yielding [Ni(II)L(B)(NCS)2] (5) (the L(B*) isomer is totally converted to L(B)). The coordinative requirements and stereochemical preference of the bulkier Zn(II) cation allow neither the ring opening of L(B)/L(B*) nor the tetracoordination of L(B) or L(B*) but stabilize the novel tetradentate dissymmetric form L(B degrees) in [Zn(II)L(B degrees)(NCS)2].H2O (8) (L(B degrees) results from MeOH addition across the imine bond of L(B)). Density functional theory calculations performed for Ni(II) and Zn(II) complexes of the L(B)/L(B*)/L(B degrees) set of ligands allowed one to compare the relative stabilities of all possible isomers, showing that the most stable ones correspond to those experimentally obtained: isomerization, or methanol addition across the imine bond, of the tetradentate ligand depends on the relative stabilities of all possible isomeric complexes.  相似文献   

18.
A new chelating agent, bis(diacetylmonoxime)thiocarbohydrazone (H3DMT), has been synthesized from reaction between diacetylmonoxime and thiocarbohydrazide. The prepared ligand, characterized by elemental analysis, IR and 1H?NMR spectra, is a strong chelating agent and indicator. Its coordinating properties have been studied toward VO2+, Co(II), Ni(II), Cu(II) and Pt(IV) ions. The data revealed the formation of mononuclear complexes with Co(II) and Pt(IV) and binuclear complexes with the rest. In all complexes, the ligand binds in its deprotonated form through the oxime and hydrazone nitrogens as well as the thiol or thione sulfur forming five- and six-membered rings. All complexes exhibit an octahedral structure except for the Cu(II) which has a square-pyramidal geometry based on the spectral and magnetic studies. The ESR spectra of the Cu(II) and VO2+ complexes are in good agreement with the structural results. The color change from acidic (yellow) to basic (reddish brown) media gives the ligand the ability to become as an analytical indicator for weak acid–weak base titrations.  相似文献   

19.
A novel macrocyclic tetradentate ligand 1,5,8,12-tetraaza-2,4,9,11-tetraphenyl-6,7:13,14-dibenzocyclohexadeca- 1,4,8,11-tetraene (L) has been synthesized. Cobalt(II), nickel(II), and copper(II) complexes of this ligand have been prepared and characterized by elemental analysis, molar conductance measurements, magnetic susceptibitity measurements, and mass, IR, electronic, and ESR spectral studies. The molar conductance measurements correspond to a nonelectrolytic nature for all the complexes, which can be formulated as [M(L)X2] (where M = Co(II), Ni(II), and Cu(II); X = Cl and NO3). On the basis of IR, electronic, and ESR spectral studies, an octahedral geometry has been assigned to the Co(II) and Ni(II) complexes, whereas a tetragonal geometry was found for the Cu(II) complexes. The investigated compounds and uncomplexed metal salts and the ligands were tested against bacterial species like Sarcina lutea, Escherchia coli, and Staphylococcus aureus. The metal complexes have higher activity than the free ligand and metal salts. The text was submitted by the authors in English.  相似文献   

20.
The synthesis of a new Schiff base containing 1,10-phenanthroline-2,9-dicarboxaldehyde and 2-mercaptoethylamine is described. The reaction of 1,10-phenanthroline-2,9-dicarboxaldehyde with 2-mercaptoethylamine leads to 2,9-bis(2-ethanthiazolinyl)-1,10-phenanthroline (I) which undergoes rearrangement when reacted with manganese, nickel, copper or zinc ions to produce complexes of the tautomeric Schiff base 2,9-bis[2-(2-mercaptoethyl)-2-azaethene]-1,10-phenanthroline (L). The [M(L)Cl2] complexes [where M = Mn(II), Ni(II), Cu(II) and Zn(II) ions] were characterized by physical and spectroscopic measurements which indicated that the ligand is a tetradentate N4 chelating agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号