首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various aerogels of silica gel doped with Fe2O3 were prepared by sol–gel method. They were calcined to produce nanoparticle solids. The nanosized mixed oxides were active in the oxidation of alcohols and produced carbonyl compounds in very good to excellent yields using hydrogen peroxide.  相似文献   

2.
Platinum–tin complexes were prepared by the reduction of Pt(IV) with Sn(II) in HCl media and studied by light absorption spectrometry, X-ray photoelectron spectroscopy (XPS), and electron microscopy. The formation of three complexes, H3[Pt(SnCl3)5], H2[Pt(SnCl3)2Cl2], and H2[Pt3(SnCl3)8], depending on HCl and SnCl2 concentrations, has been shown. The glassy carbon (GC) electrode modified in the complexes solutions was found to be an electrocatalyst for borohydride oxidation in a 1.0-M NaOH solution. Comparison of BH4 electrooxidation on Pt and on GC modified with platinum–tin complexes has shown that catalytic hydrolysis of BH4 did not proceed in the latter case in contrast to its oxidation on the Pt electrode, and only direct BH4 oxidation has been observed in the positive potentials scan. The activity of Pt–Sn complexes for BH4 oxidation changes with time and eventually decreases due to Sn(II), bound in the complex with Pt(II), oxidation by atmospheric oxygen. The complexes may be renewed by addition of missing amounts of SnCl2 and HCl.  相似文献   

3.
Research on Chemical Intermediates - Palladium–Cobalt (Pd–Co) alloys with different atomic ratios were synthesized successfully by borohydride-assisted chemical reduction method....  相似文献   

4.
Research on Chemical Intermediates - In this work, Pd nanoparticles (Pd-NPs) were decorated on modified magnetic nanoparticles (MNPs) and used as an efficient and recyclable catalyst for the Suzuki...  相似文献   

5.
Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets.  相似文献   

6.
The effect of palladium segregation was studied which resulted from the effect of CO and O2 on the surface structure and catalytic characteristics of the Pd–Ag2/Al2O3 catalyst. The IR-spectroscopic study of adsorbed CO showed that Pd1 centers isolated from each other by silver atoms predominated on the surface of reduced Pd–Ag2/Al2O3, as evidenced by the almost complete absence of absorption bands typical for the multicentred CO adsorption. In the course of catalyst treatment with CO and O2, the intensity of absorption bands characteristic of the multicenter CO adsorption considerably increased due to the transformation of a portion of monatomic Pd1 centers into multiatomic Pdn ones as a result of the surface segregation of Pd. In this case, a substantial increase in the catalyst activity in the liquid-phase hydrogenation of diphenylacetylene was observed. It was established that, after treatment with CO, the catalyst selectivity for the formation of a target olefin (stilbene) remained almost constant, whereas the treatment with O2 led to a decrease in the selectivity because of more considerable surface modification.  相似文献   

7.
The effect of Pt additives on the catalytic characteristics of a Pd-containing catalyst based on manganese hexaaluminate was studied. It was found that the bimetallic PtPd-containing catalysts based on MnLaAl11O19 with the Pt/Pd atomic ratio smaller than 0.25 exhibited a comparable or somewhat smaller activity in the methane oxidation, but their stability at elevated temperatures and gas flow rates was higher than that of the Pd-based catalyst. The state of the active constituent of the resulting catalysts was investigated. Main correlations between the state of the active component and the catalytic activity were revealed.  相似文献   

8.
A tremendous effort has been provided in last two decades to develop efficient transition metal–based heterogeneous catalysts for the electrochemical water oxidation. Several approaches such as composition modulation, heteroatom doping, morphological development, particle size tuning, surface area enhancement, and control over electronic structure have been explored for the designing of the materials with improved water oxidation activity. As the electrochemical process is a surface phenomenon, surface structure plays a crucial role in controlling the water oxidation activity. Rational engineering of the catalyst surface by composition modulation, crystal facet tuning, and generating functional overlayer has been reported to enhance the water oxidation activity. Heteroatom doping, cationic and anionic deficiencies, and ultrathin 2D morphology are also found to promote electrochemical performance. In addition, engineering in the interface provides intrinsic improvement of the catalytic activity and stability for the electrochemical water oxidation. Although, surface and interface engineering of the catalyst has come out as the major factors in the electrochemical water oxidation, no dedicated review is available in this field. In this review, we have described the strategies of improving water oxidation activity of the catalysts by surface and interface engineering. The progress in this field discussed in detail; the challenges have been identified and addressed to attain a clear understanding in this field.  相似文献   

9.
The hollow Pd–PVP–Fe nanosphere and Fe–PVP nanoparticle catalysts were synthesized by thermal method. Mixing of two metallic nanocatalysts was applied in the Csp–S cross-coupling reactions between diphenyl disulfide and phenylacetylene under mild conditions in water. Results show that bi-catalytic system has higher catalytic efficiencies than their monocatalytic systems due to synergy between two catalysts. Order of adding two metallic catalysts were adjusted into the coupling reaction medium. Therefore, various bi-catalytic systems were obtained and characterized by XRD, SEM, EBSD, EDX, UV–Vis spectra, and particle size analyzer. Under special order of adding, the obtained hollow nanoshell-sphere Fe@Fe/Pd reactor showed higher catalytic activity in the coupling reaction compared to other bi-catalytic systems. The Csp–S coupling products obtained of various diaryl disulfides and phenylacetylene at presence Fe@Fe/Pd (only 7.3?×?10?5 mmol Pd) catalyst with moderate to high yields in water solvent and mild reaction conditions. After the reaction, the catalyst/product(s) separation could be easily achieved with an external magnet and more than 95% of catalyst could be recovered. The recovered catalyst was characterized by XRD, SEM, EBSD, EDX, and UV–Vis spectra. The Fe@Fe/Pd was reused at least six repeating cycles without any loss of its high catalytic activity. Tuning morphology and chemical composition of bi-catalytic system are key mainstays of high activity of Fe@Fe/Pd in repeating cycles of cross-coupling reactions.  相似文献   

10.
Thin films of pure Pd and composite of Pd and 1% multiwalled carbon nanotube have been obtained on glassy carbon electrodes by borohydride reduction method and investigated as electrocatalysts for the oxidation of phenol in acid medium at 25 °C, using cyclic voltammetry (CV), chronopotentiometry, and high-performance liquid chromatography. The CV study showed that both the electrocatalysts are quite stable and active for the phenol oxidation in acid medium. Further, these electrodes do not seem to undergo deactivation due to intermediates and products formed during the phenol oxidation. With the increase in phenol concentration from 2 to 25 mM, the peak current (I p) increases initially, reaches maximum at about 15 mM, and tends to decrease thereafter. The peak potential (E p) value was found to be practically unchanged with phenol concentration. The rate for phenol oxidation (I p) at the surface of both the electrocatalysts increased with the decrease in pH of the reaction mixture. The electrocatalytic activity of the composite electrode was, however, higher than that of pure Pd under similar experimental conditions. Benzoquinone and hydroquinone were identified as the major phenol degradation intermediate products.  相似文献   

11.
Two novel amphiphilic catalysts 3 and 4 were synthesized by the condensation of isosteviol with l-proline in a one-pot process. With only 1 mol % loading, the catalyst 3 showed excellent activity (up to >99% yield) and stereoselectivity (up to 99:1 dr, >99% ee) for the direct aldol reaction of cyclohexanone and substituted benzaldehydes at room temperature in the presence of water. In addition, solvent effects, catalyst loading, substrate scope, temperature, and the influence of water on the reactions were investigated. These results demonstrate that the catalysts with a chiral concave and hydrophobic substituent in the 4-position of l-proline furnished high activity and stereoselectivity for the reaction.  相似文献   

12.
Processes of electrochemical oxidation of Pd-rich Pd–Ni alloys in basic solutions were studied with the aim of electrochemical quartz crystal microbalance. Potentials of current peaks of Ni(II)/Ni(III) redox couple are independent of alloy composition. On the other hand, Ni(II)/Ni(III) redox couples formed on Pd–Ni alloys and Ni differ in respect to the structure of involved compounds and the processes of transport of the species accompanying oxidation/reduction reaction. The process of oxidation of Pd exhibits some differences between pure Pd and Pd–Ni alloys. This concerns mainly on participation of adsorbed water/OH in Pd oxidation process. In the initial stages of Pd oxidation, the source of oxygen is water/OH from the bulk of the solution. At this stage of the process, the product of Pd oxidation could be described as Pd(OH)2 or PdOH2O. With further progress in oxidation process, adsorbed species, water/OH, start to play a decisive role. Hydrous species, i.e. Pd(OH)2 or PdOH2O, are also reduced in the final stages of Pd(II) reduction process. This study is dedicated to the 70th birthday of Professor Oleg Petrii.  相似文献   

13.
Recyclable and readily prepared Ni and Pd nanocomposite carbon aerogels have been successfully used in the Suzuki–Miyaura reaction in water medium and aerobic conditions. In these ligand-free and environmentally-friendly conditions the Ni–carbon aerogel shows better recyclability than the corresponding palladium material. No appreciable leaching of Nickel could be detected after six reaction cycles. Interestingly enough, we have demonstrated for the first time that metal embedded carbon aerogels can be also used in water medium.  相似文献   

14.
The applications of zerovalent iron nanoparticles (nZVI) exploit their high reactivity which decreases due to oxidation in aerobic conditions during manufacture, application, and storage. In this study, we present the new procedure for estimation of the nZVI stability to oxidation in air. The procedure is suitable for characterization of the novel materials based on the supported nZVI. Nanoscale particles were synthesized inside porous silica supports by incipient wetness impregnation with the metal precursor solutions followed by thermal treatment. The TG–DTA studies revealed the decomposition temperature of the supported precursors, as well as the interaction of Fe and precious metal precursors, which resulted in the formation of alloy nanoparticles. Characterization of the samples by XRD confirmed the formation of the nanoparticles of the metallic Pd, Pt, and Fe phases supported on SiO2 carriers, as well as the formation of solid solutions based on the structure of precious metals. The new procedure for estimation of the nZVI stability included (1) TPR with hydrogen up to 400–425 °C followed by isothermal reduction at these temperatures; (2) in situ reoxidation with oxygen at room temperature. The samples were reduced “as obtained” and after in situ reoxidation. The results of the TPR studies exhibited that introduction of both Pd and Pt protected the Fe nanoparticles from oxidation with oxygen and air at ambient conditions.  相似文献   

15.
We have studied the catalytic properties in oxidation of hydrogen for copper–cerium oxide systems deposited on supports obtained by calcination of yttrium-stabilized zirconium dioxide at 300–1000 °C. We have shown that the catalytic activity of the samples obtained depends on the specific surface area of the original supports and the amount of reduced copper within the composition of the catalyst. In samples whose support has high specific surface area, the content of reduced metallic copper is greater and the catalytic activity is higher.  相似文献   

16.
The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au–Pt, Au–Pd and Pt–Pd catalysts on Ti O2 were examined under base-free conditions. Pt exhibited a superior activity relative to Pd, and Au–Pd and Pt–Pd while Au was essentially inactive. The presence of Au on the Au–Pt/Ti O2 catalysts led to their higher activities(normalized per Pt atom) in a wide range of Au/Pt atomic ratios(i.e.1/3–7/1), and the one with the Au/Pt ratio of 3/1 exhibited the highest activity. Such promoting effect is ascribed to the increased electron density on Pt via the electron transfer from Au to Pt, as characterized by the temperature-programmed desorption of CO and infra-red spectroscopy for CO adsorption. Meanwhile,the presence of Au on Au–Pt/Ti O2, most like due to the observed electron transfer, changed the product selectivity, and facilitated the oxidation of the secondary hydroxyl groups in glycerol, leading to the favorable formation of dihydroxyacetone over glyceraldehyde and glyceric acid that were derived from the oxidation of the primary hydroxyl groups. The synergetic effect between Au and Pt demonstrates the feasibility in the efficient oxidation of glycerol to the targeted products, for example, by rational tuning of the electronic properties of metal catalysts.  相似文献   

17.
Research on Chemical Intermediates - This study focuses on covalent grafting of ZrO to β-CD to prepare an organic–inorganic hybrid material. The synthesised product was successfully...  相似文献   

18.
Ir–Ni oxide nanoparticles were simply prepared by stirring IrCl3 and NiCl2 precursors in aqueous base under air. The activities of a series of IrNiyOx nanoparticles with different Ir-to-Ni ratios were measured toward water oxidation in 0.1 M H2SO4. The Ir-to-Ni ratio was 1:0.125 in the most active catalyst (mass normalized > 140 A g 1 Ir, electrochemically active surface area normalized > 203 A mmol 1Ir). The stabilized potential for the galvanostatic oxidation (1 mA cm 2geometric) was as low as 1.51 VRHE, corresponding to 0.28 V in overpotential.  相似文献   

19.
The Pt–Ni alloy nanoparticles with different Pt/Ni atomic ratios supported on functionalized multiwalled carbon nanotubes surface were synthesized via an impregnation-reduction method. The nanocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques. XRD demonstrated that Pt was alloyed with Ni. TEM showed that the Pt–Ni alloy nanoparticles were uniformly dispersed on the multiwalled carbon nanotubes (MWCNTs) surface, indicating appropriate amount of Ni in Pt–Ni alloy which facilitates the dispersion of nanoparticles on the MWCNT surface. XPS revealed that the Pt 4f peak in Pt–Ni/MWCNT (4:1) catalyst shifted to a lower binding energy compared with Pt/MWCNT catalyst, and nickel oxides/hydroxides such as NiO, Ni(OH)2, and NiOOH were on the surface of Pt–Ni nanoparticles. Electrochemical data based on cyclic voltammetry and chronoamperometric curves indicated that Pt–Ni (4:1) alloy nanoparticles exhibited distinctly higher activity and better stability than those of Pt/MWCNTs toward methanol oxidation in alkaline media.  相似文献   

20.
The preparation of a variety of catalysts obtained by ion exchange of the complex [(dppb)Pt(μ−OH)]22+ with sulfonated styrene–divinylbenzene copolymers is reported. Copolymers used are commercial ion exchange resins containing either 4% or 20% DVB and they were loaded with either Li+ or NBu4+ prior to exchange with the Pt complex. Metal loading in the heterogenized catalysts is in the range 2–8% by weight. Their catalytic properties in the Baeyer–Villiger oxidation of methylcyclohexanone with hydrogen peroxide appear to be best in terms of activity and productivity either in neat ketone or in EtOH as the solvent. The use of commercial resins with high exchange capacity prevents the use of DCE as the solvent, i.e., the optimum conditions for the homogeneous system, thereby leading to activities and productivities that are generally lower than their homogeneous counterpart. A discussion on the influence of the philicity properties of the support with respect to the performance of the catalyst is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号