首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past three decades, dye-sensitized solar cells (DSSCs) have gained increased recognition as a potential substitute for inexpensive photovoltaic (PV) devices, and their maximum efficiency has grown from 7% to 14.3%. Recent developments in DSSCs have attracted a plethora of research activities geared at realizing their full potential. DSSCs have seen a revival as the finest technology for specific applications with unique features such as low-cost, non-toxic, colourful, transparent, ease of fabrication, flexibility, and efficient indoor light operation. Several organic materials are being explored and employed in DSSCs to enhance their performance, robustness, and lower production costs to be viable alternatives in the solar cell markets. This review provides a concise summary of the developments in the field over the past decade, with a special focus on the incorporation of organic materials into DSSCs. It covers all elements of the DSSC technology, including practical approaches and novel materials. Finally, the emerging applications of DSSCs, and their future promise are also discussed.  相似文献   

2.
In this paper, by introducing [1,2,5]thiadiazolo[3,4-c]pyridine (PT) as an auxiliary acceptor into the molecular design of organic sensitizers, we have synthesized four new dyes (PT1PT4) for dye-sensitized solar cells (DSSCs) with triphenylamine or N,N-diphenylthiophen-2-amine as the donor units and thiophene or benzene as the π-bridges, respectively. All the structures, optical and electrochemical properties were fully characterized. Nanocrystalline TiO2 dye-sensitized solar cells were also fabricated using these dyes. Among them, PT2-based DSSCs showed the highest overall conversion efficiency of 6.11% with Voc=668 mV, Jsc=12.61 mA cm−2 and a fill factor (FF)=0.74 after a chenodeoxycholic acid (CDCA) treatment under standard illumination condition (100 mW cm−2 simulated AM 1.5 solar light).  相似文献   

3.
Dye-sensitized solar cells(DSSCs) have attracted significant attention as alternatives to conventional silicon-based solar cells owing to their low-cost production,facile fabrication,excellent stability and high power conversion efficiency(PCE).The dye molecule is one of the key components in DSSCs since it significant influence on the PCE,charge separation,light-harvesting,as well as the device stability.Among various dyes,easily tunable phenothiazine-based dyes hold a large proportion and achieve impressive photovoltaic performances.This class of dyes not only has superiorly non-planar butterfly structure but also possesses excellent electron donating ability and large π conjugated system.This review summarized recent developments in the phenothiazine dyes,including small molecule phenothiazine dyes,polymer phenothiazine dyes and phenothiazine dyes for co-sensitization,especially focused on the developments and design concepts of small molecule phenothiazine dyes,as well as the correlation between molecular structures and the photovoltaic performances.  相似文献   

4.
A series of new organic dyes containing an electron-deficient diphenylquinoxaline moiety was synthesized and employed as the photosensitizers in dye-sensitized solar cells (DSSCs). The multiple phenyl rings in the peripheral positions of the dye structure provide a hydrophobic barrier to slow down the charge recombination. The photophysical and electrochemical properties of these dyes were investigated in detail. The cell performance and the associated photophysical and electrochemical properties can be easily tuned by the modification of the aromatic fragments within the π spacer. Dye CR204-based DSSC reached the best energy conversion efficiency of 6.49% with an open-circuit voltage of 666 mV, a short-circuit photocurrent density of 14.9 mA cm−2, and a fill factor of 0.66. The IPCE of CR204-based DSSC covers the light-harvesting to NIR region.  相似文献   

5.
We synthesized three metal-free organic dyes (H11H13) consisting of a 3,6-disubstituted carbazole, benzothiadiazole, and cyanoacrylic acid. All the dyes exhibited high molar extinction coefficients and suitable energy levels for electron transfer from the electrolyte to the TiO2 nanoparticles. Under standard AM 1.5G solar irradiation, the device using dye H13 with co-adsorbed chenodeoxycholic acid (CDCA) displayed the best performance: an open-circuit voltage (Voc) of 0.71 V, a short-circuit current density (Jsc) of 12.69 mA cm−2, a fill factor (FF) of 0.71, and a power conversion efficiency (PCE) of 6.32%. The PCE was ∼79% of that for commercially available N719 cells (8.02%) under the same conditions.  相似文献   

6.
We have synthesized a series of new dipolar organic dyes Bn (n=0, 1, 2) employing triarylamine as the electron-donor, 2-cyanoacrylic acid as the electron-acceptor, and fluorenevinylene as the conjugated bridge, which were used as sensitizers in dye-sensitized solar cells. It is found that the solar-energy-to-electricity conversion efficiencies of the prepared DSSCs are in the range of 2.79-5.56%, which reach 35-70% of a standard device based on N719 fabricated and measured under the same conditions. The DSSC sensitized with B1 with balanced length of conjugated bridge shows the highest photo-to-electrical energy conversion efficiency and the open-circuit photovoltage (Voc) of 0.86 V.  相似文献   

7.
Three donor-(π-spacer)-acceptor (D-π-A) organic dyes, containing different groups (triphenylamine, di(p-tolyl)phenylamine, and 9-octylcarbazole moieties) as electron donors, were designed and synthesized. Nanocrystalline TiO2 dye-sensitized solar cells were fabricated by using these dyes. It was found that the variation of electron donors in the D-π-A dyes played an important role in modifying and tuning photophysical properties of organic dyes. Under standard global AM 1.5 solar condition, the DSSC based on the dye D2 showed the best photovoltaic performance: a short-circuit photocurrent density (J sc ) of 13.93 mA/cm2, an open-circuit photovoltage (V oc ) of 0.71 V, and a fill factor (FF) of 0.679, corresponding to solar-to-electric power conversion efficiency (η) of 6.72%. Supported by the Key Project of Hunan Province of China (Grant No. 2008FJ2004), Natural Science Foundation of Hunan Province of China (Grant Nos. 09JJ3020 & 09JJ4005), and Scientific Research Fund of Hunan Provincial Education Department (Grant No. 08C888).  相似文献   

8.
Yun Zhao  Kejian Jiang  Wei Xu  Daoben Zhu 《Tetrahedron》2012,68(44):9113-9118
A novel class of organic D-π-A dyes employing macrocyclic triphenylamine dimer as electron donor was designed and synthesized for dye-sensitized solar cells. The prepared compounds showed high chemical and elelctrochemical stabilities as well as good long-wave absorption. Photovoltaic devices based on these dyes showed high open circuit voltage (higher than that of N3) and achieved a solar energy to electricity conversion efficiency of 6.31%. All the performances indicate the dyes containing macrocyclic triphenylamine dimer is a good candidate for dyes sensitized solar cells.  相似文献   

9.
New quinoxaline-based organic sensitizer bearing di-anchoring group for dye-sensitized solar cells (DSSCs) was synthesized from diethyl 4,5-diaminophthaltate, in which was prepared under mild condition by using Takehito’s method. The synthesized sensitizer was compared with mono-anchoring sensitizer through absorption spectra, emission spectra, J-V curve, and IPCE spectra, indicating the di-anchoring group leads to a noticeable improvement of Jsc value owing to more efficient intramolecular charge transfer and channel number increment.  相似文献   

10.
Four kinds of ring-fluorinated fluoresceins and sulfofluorescein from tetrafluororesorcinol and/or tetrafluorophthalic anhydride have been synthesized and the photochemical properties of the zinc oxide nanocrystalline electrode sensitized by the ring-fluorinated fluoresceins were investigated.  相似文献   

11.
《中国化学》2018,36(6):502-506
Fluorination of conjugated polymers is one of the effective strategies to tune the molecular energy levels and morphology for high efficient polymer solar cells (PSCs). Herein, two novel donor‐acceptor conjugated polymers, PffBT and PBT, based on bis(3,5‐bis(hexyloxy)phenyl)benzo[1,2‐ b:4,5‐b']dithiophene and benzo[c][1,2,5]thiadiazole (BT) with or without fluorination, respectively, were synthesized, and their photovoltaic properties were compared. The polymer PffBT based on fluorinated BT showed lower frontier energy levels, improved polymer ordering, and a well‐developed fibril structure in the blend with PC71BM. As a result, the PSCs based on PffBT/PC71BM exhibit a superior power conversion efficiency (PCE) of 8.6% versus 4.4% for PBT‐based devices, due to a high space charge limit current (SCLC) hole mobility, mixed orientation of polymer crystals in the active layer, and low bimolecular recombination.  相似文献   

12.
As an emerging donor building block, naphthodithiophene (NDT) is causing more concerns in the field of organic semiconductors. With the rigid and coplanar molecule structure, NDT will exhibit more application space relying on its own advantage for facilitating the charge carrier transport. In this review article, we have summarized the development progress on the NDT-based donor materials for solution processed organic solar cells. Discussions and comments on those representative NDT type materials about structure and property are also presented.  相似文献   

13.
Three novel azo thiazole organic dyes, NA-13, have been synthesized and utilized as co-sensitizers in dye-sensitized solar cells (DSSCs). These co-sensitizers were designed with a thiazole ring π-bridge that mediates between the diazo (–N = N–) functional group and carboxylic acid anchoring unit. They possess a rod-like molecular structure and exhibit strong UV–vis absorption near 600 nm. Co-sensitization studies were also conducted with the ruthenium complex N719. The co-sensitized DSSCs showed enhanced short-circuit and open-circuit photocurrents (Jsc) and voltages (Voc), resulting in more efficient photovoltaic performance compared to N719 (PCE 7.25%). Electrochemical impedance spectroscopy (EIS) and incident photon to current efficiency (IPCE) were employed to investigate the underlying reasons for these improvements. It was found that co-sensitization effectively reduced electron recombination, resulting in a higher Voc without compromising photocurrent loss.  相似文献   

14.
Novel organic dyes, JK-16 and JK-17 containing bis-dimethylfluorenyl amino benzo[b]thiophene are designed and synthesized. Under standard global AM 1.5 solar condition, the JK-16 sensitized cell gave a short circuit photocurrent density (Jsc) of 15.33 mA cm−2, open circuit voltage (Voc) of 0.74 V, and a fill factor of 0.66, corresponding to an overall conversion efficiency η of 7.43%, and the JK-17 sensitized cell gave a Jsc of 12.66 mA cm−2, Voc of 0.67 V, and a fill factor of 0.65, corresponding to an overall conversion efficiency η of 5.49%.  相似文献   

15.
Developing arylamine photosensitizers with high extinction coefficients, proper electronic structures, and steric properties is warranted for the dye-sensitized solar cells (DSCs) employing iodine-free redox shuttles. Two new organic sensitizers (M21 and M22) featuring unsymmetrical truxene-based triarylamine donor have been synthesized and compared to its reference sensitizer M4. The effects of unsymmetrical truxene-based triarylamine donors were investigated by their absorption spectra, electrochemical and photovoltaic properties. The incorporation of strong electron donor unit (i.e., dipropylfluorene and 4-methoxybiphenyl) has resulted in an improved light harvesting capacity, and thus photocurrent as well as efficiency of cells. M22 sensitized DSCs employing the Co(II/III)tris(1,10-phenanthroline)-based redox electrolyte affords a short circuit photocurrent of 13.1 mA cm−2, an open circuit voltage of 861 mV, and a fill factor of 0.70, corresponding to an overall conversion efficiency of 7.89% under standard AM 1.5 sunlight.  相似文献   

16.
Four novel symmetrical organic dyes (S1-S4) configured with acceptor-donor-acceptor (A-D-A) structures containing electron donating fluorene (S1 and S2) and N-alkyl dithieno[3,2-b:2′,3′-d]pyrrole (DTP) (S3 and S4) cores terminated with two anchoring cyanoacrylic acids (as electron acceptors) were synthesized and applied to dye-sensitized solar cells (DSSCs). The DSSC device based on S2 dye showed the best photovoltaic performance among S1-S4 dyes: a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 76%, a short circuit current (JSC) of 12.27 mA/cm2, an open circuit voltage (VOC) of 0.61 V, a fill factor (FF) of 0.63, and an overall power conversion efficiency (η) of 4.73%. Besides, the utilization of chenodoxycholic acid (CDCA) as a co-adsorbent in the DSSC device based on S3 dye showed a significant improvement in its η value (from 3.70% to 4.31%), which is attributed to the suppression of dye aggregation on TiO2 surface and thus to increase the JSC value eventually.  相似文献   

17.
近几十年来,随着全球变暖和能源危机的日益严重,对取之不尽、用之不竭的清洁能源技术的需求越来越迫切.1991年Gratzel首次报道了染料敏化太阳能电池(DSSCs),它以低廉的价格、优异的理论功率转换效率(PCE)、环保、多色透明等优点而引起了研究者的关注.Sb2S3因其1.5-2.2 eV的间隙宽度被认为是最有前途的对电极材料之一.此外,Sb2S3是地球中含量丰富的无毒锑矿物的主要成分,还被广泛应用于太阳能转换材料、催化剂、光导探测器等领域.众所周知,石墨烯具有巨大的比表面积、显著的载流子迁移率和优异的热/化学稳定性,这使得提高电子转移效率和电催化活性成为可能.首先,采用改进的Hummers方法制备了氧化石墨烯纳米片;然后采用水热法通过改变Sb源以及实验pH值,合成了Sb2S3和Sb2S3@RGO样品.对样品进行X射线粉末衍射(XRD)、扫描电子显微镜镜(SEM)、投射电子显微镜(TEM)以及比表面积表征.结果表明,在Sb源不变的情况下,Sb2S3样品的形貌随pH值的变化而变化.以三乙酸锑为Sb源,在pH=3时,Sb2S3的形貌类似于一个完整的纳米棒结构;在pH值为6时,样品为不规则球体;当pH值为8时,纳米片结构开始出现;但当p H=10时,纳米片结构并不均匀.根据XRD分析,只有当pH值为3时,样品的衍射峰才与标准卡(JCPDS42-1393)的衍射峰一致.当以氯化锑作为锑源,样品的形貌由不规则的杆状(pH=3)转变为纳米球(pH=6),然后出现纳米片结构(pH=8).不同的是,当p H值为10时,纳米薄片形成均一的花状结构.XRD结果表明,除pH值为3外,样品的衍射峰与标准卡(JCPDS42-1393)的值吻合较好.结果表明,合成条件所需的Sb源和碱性环境是合成具有均匀花状结构的纳米片状Sb2S3所必不可少的.测得Sb2S3的比表面积约为41.72 m^2g^-1,平均孔径为31.08nm,Sb2S3@RGO的分别为44.53 m^2g^-1和22.65 nm.Sb2S3和Sb2S3@RGO复合材料均具有介孔结构,为内部电催化剂提供了广阔的通道,从而提高了对电极的催化能力,促进了电化学反应.将Sb2S3纳米花球和Sb2S3@RGO纳米薄片作为染料敏化太阳能电池的对电极进行了测试,由于石墨烯的引入,后者比前者具有更好的电催化性能.电化学实验结果表明,与Sb2S3,RGO,Pt作为对电极相比,制备的Sb2S3@RGO纳米薄片具有更好的催化活性、电荷转移能力和电化学稳定性,Sb2S3@RGO的功率转换效率达到8.17%,优于标准Pt对电极(7.75%).  相似文献   

18.
Duckhyun Kim  Kihyung Song  Jaejung Ko 《Tetrahedron》2008,64(45):10417-10424
Three organic dyes, JK-77, JK-78, and JK-79 containing indole unit are designed and synthesized. Nanocrystalline TiO2 dye-sensitized solar cells were fabricated using these dyes. Under standard global AM 1.5 solar condition, the JK-79 sensitized solar cell gave a short circuit photocurrent density of 13.62 mA cm−2, open-circuit voltage of 0.705 V, and a fill factor of 0.74, corresponding to an overall conversion efficiency η of 7.18%. We found that the η of JK-79 was higher than those of other two cells due to the higher Voc. The improved Voc value is attributed to the suppression of dark current owing to the blocking effect of a long alkyl chain.  相似文献   

19.
Two new organic sensitizers, 2-cyano-3-(6-(4-(diphenylamino)phenyl)-4-(2-ethylhexyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrol-2-yl)acrylic acid and 2-cyano-3-(6-(4-(diphenylamino)phenyl)-4-(4-(hexyloxy)phenyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrol-2-yl)acrylic acid, consisting of electron donating (triphenylamine) and electron accepting (cyanoacrylic acid) functionalities linked by two different rigidified π-spacers, N-alkyl- and N-aryl-dithieno[3,2-b:2′,3′-d]pyrrole, were designed, synthesized and applied for dye-sensitized solar cells, respectively. The materials were successfully synthesized through Knoevenagel condensation reactions. Ultraviolet–visible absorption spectra revealed that the use of either of rigidified π-spacer resulted in similar charge transfer transition, however, enhanced spectral response was observed when compared with an oligothiophene analogue. In terms of their photovoltaic performance, new dyes outperformed the reference bithiophene sensitizer when tested with nitrile-based and ionic liquid-based electrolytes.  相似文献   

20.
Two sets of organic dyes containing a stilbene backbone with fluorine substituents were designed for a study on the quantum efficiency of dye-sensitized solar cells (DSSCs). The results revealed that adding a fluorine substituent on the phenyl group ortho to the cyanoacrylate can enhance the light-harvesting performance in comparison with the unsubstituted one. However, when the two ortho-positions were both substituted by fluorine atoms, the performance of DSSCs was substantially reduced. The reason was mainly ascribed to a distortion from a planar geometry caused by steric hindrance. The π-conjugation was therefore disturbed, and the result led to a substantial reduction of the short-circuit photocurrent density (Jsc). Another effect was found that the open-circuit photovoltage (Voc) of the doubly substituted derivative was lower than that of the mono-substituted one. The more flexible conformation of the difluoro-substituted dyes induced an undesired nonradiative decay, therefore led to a reduction of open-circuit photovoltage. The phenomenon can be verified by electrochemical impendence spectrum. The non-planar geometry was realized by a computation using the density function theory (DFT) model. The slight blue shift of absorption band was also consistent with the calculated transition energy by a time dependent DFT model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号