首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azobenzene-based receptors 1-4 as colorimetric sensing materials were synthesized and their sensing properties were examined. In solution, the proposed sensing materials give rise to a large cation-induced hypochromic shift for Cu2+ resulting in a change from red to pale-yellow, whereas no significant color change was observed upon addition of other selected metal ions. The use of the silica gel plate modified with immobilization of receptor 4 to detect Cu2+ was also reported.  相似文献   

2.
A simple (R)-(−)-2-phenylglycinol functionalized Schiff base L1 and its characterization as a fluorescent–colorimetric sensor for Hg2+ ion are described. The UV–vis and fluorescence analysis in methanol and aqueous solution show complex formation between L1 and Hg2+ ion with a micromolar association constant. Competition experiments performed for the acetate salts of Hg2+, Zn2+, Co2+, Pb2+, Cd2+, Mn2+, Cu2+, Ni2+, and Ba2+ revealed that compound L1 exhibits high selectivity toward Hg2+ displaying a color change easily detectable by naked-eye and a turn-off fluorescent effect due to a chelation-enhanced quenching (CHEQ) mechanism. Moreover, addition of EDTA to L1–Hg2+ recovers the fluorescence and color offering receptor L1 as a reversible sensor for real-time applications.  相似文献   

3.
A new multifunctional chemosensor 1 was synthesized and characterized by spectroscopic tools along with a single crystal X-ray crystallography. It can exhibit selective recognition responses toward Cu2+, Zn2+ and Al3+ in different solvent systems with bimodal methods (colorimetric and fluorescence). This sensor 1 detected Cu2+ ions through a distinct color change from colorless to yellow in aqueous solution. Interestingly, the receptor 1 was found to be reversible by EDTA. The detection limit (11 μM) of 1 for Cu2+ is much lower than WHO guideline (30 μM) in drinking water. In addition, the sensor 1 showed significant fluorescence enhancements in the presence of Zn2+ ion and Al3+ ion in two different organic solvents (DMF and MeCN), respectively. The binding modes of the three complexes were determined to be a 1:1 complexation stoichiometry through Job plot, ESI-mass spectrometry analysis, and 1H NMR titration.  相似文献   

4.
Kuljit Kaur 《Tetrahedron》2010,66(34):6990-10502
To examine the consequences of nature and number of nitrogen atoms on metal ion sensing properties, four new molecular receptors based on 1-aminoanthracene-9,10-dione as chromogenic moiety and different types of nitrogen atoms viz. arylamine, alkylamine, and pyridyl nitrogen as appendages have been synthesized. These receptors in CH3OH/H2O (1:1) (v/v) at pH 7.0, on addition of heavy metal ions show selective and/or semi-selective interactions. These binding interactions are visible to naked eye due to remarkable color change and are associated with λmax shift by 85-125 nm. Molecular receptor 2, with two sp2 hybridized nitrogen atoms and one arylamine nitrogen, selectively binds with Cu2+ but 2-Cu2+ complex is stable only between pH 7.0 and 8.75. However, the conversion of imine nitrogen to alkylamine in molecular receptor 6, increases the binding ability toward Cu2+ along with significant binding affinities toward Ni2+ and Co2+. Receptor 6 shows the stability of its complexes in the order Cu2+>Ni2+>Co2+ in a broader pH range 6-12. Dipicolylamine based receptor 8, possessing two pyridyl nitrogen atoms, one tertiaryamine and one arylamine nitrogen atoms as ligating sites, also binds semiselectively in the order Cu2+>Co2+>Ni2+. Receptor 10, possessing anilide group in the place of arylamine in receptor 8, on addition of Cu2+, Ni2+ or Co2+ shows bathochromic shift of λmax associated with color change from yellow to russet (brown) and on addition of Zn2+ shows hypsochromic shift of its λmax associated with disappearance of yellow color. Additionally, all the four chemosensors show ratiometric response toward all these metal ions and thus increase the usability and the dynamic range of estimation.  相似文献   

5.
A perylene bisimide derivative (PBI) based colorimetric and fluorescent bifunctional probe PAM-PBI was designed and synthesized. It was highly selective and sensitive for distinguishing both Cu2+ and F from other ions through a conspicuous change of UV–vis and fluorescence spectra. The recognition of Cu2+ by PAM-PBI showed an obvious color change from rose red to purple in aqueous solution, while the sensing of F gave a marked color change from rose red to light green in THF.  相似文献   

6.
Three new ditopic receptors 3a-c based on thiacalix[4]arene of 1,3 alternate conformation possessing two different complexation sites have been designed and synthesized for both soft and hard metal ions. The imino nitrogens bind soft metal ion (Ag+/Pb2+/Cu2+) and the crown moiety binds K+ ion. The preliminary investigations show that 3a-c behave as ditopic receptors for Ag+/K+, Pb2+/K+, and Cu2+/K+ ions, respectively. In all the three receptors it was observed that the formation of 3a·Ag+/3b·Pb2+/3c·Cu2+ complex triggers the decomplexation of K+ ion from crown moiety and acts as a gateway, which regulates the binding of alkali metal to crown moiety. Thus, allosteric binding between metal ions ‘switch off’ the recognition ability of crown ether ring.  相似文献   

7.
Hong Yang  Tao Yi 《Tetrahedron》2007,63(29):6732-6736
Anthraquinone derivatives with different substituents 1-3 were synthesized by introducing the urea group. Their cations' binding properties were investigated by UV-vis absorption spectroscopy. Compared with 1 and 2, 3 with electron-withdrawing group (-NO2) showed a remarkable absorption change for Hg2+ over the other metal ions. The anthraquinone moiety and the N-H fragment of the urea moiety played key roles in sensing Hg2+. The different acidity of N-H fragments of the urea moiety, caused by electron push-pull properties of the substituents on the phenyl para position, is the main reason for recognition.  相似文献   

8.
A new bis(8-carboxamidoquinoline) dangled binaphthol derivatized fluorescent sensor (L) was designed and synthesized. L behaves ratiometric response to Zn2+ with high selectivity accompanied by remarkable emission enhancement and red shift. The resultant L–Zn2+ complex can act as a Cu2+ sensing probe with fluorescence quenching behavior through direct Zn2+ ion replacement. Furthermore, the binding modes of Zn2+ and Cu2+ with L are elucidated by X-ray crystallographic analysis, respectively.  相似文献   

9.
New N-(pyrenylmethyl)naphtho-azacrown-5 (1) was synthesized as an ‘On-Off’ fluorescent chemosensor for Cu2+. Excited at 240 nm corresponding to the absorption of naphthalene unit (energy donor) of 1, emission at 380 nm from pyrene unit (energy acceptor) is observed, indicating that intramolecular fluorescence resonance energy transfer (FRET-On) occurs in 1. When Cu2+ is added to a solution of 1, however, the fluorescence of pyrene is strongly quenched (FRET-Off) whereas that of naphthalene group is revived. Such FRET ‘On-Off’ behavior of 1 is observed only in the case of Cu2+ binding, but not for other metal cations. The high selectivity of 1 toward Cu2+ can be potentially applied to a new kind of FRET-based chemosensor. The FRET On-Off behavior is supported by computational studies. The calculated molecular orbitals of HOMO and LUMOs suggest the excited-state interactions leading to FRET from naphthalene to pyrene in 1, but no electron density changes in 1·Cu2+ complex.  相似文献   

10.
A new pyrene derivative (1) containing a diaminomaleonitrile moiety exhibits high selectivity for Cu2+ detection. Significant fluorescence enhancement was observed with chemosensor 1 in the presence of Cu2+. However, the metal ions Ag+, Ca2+, Cd2+, Co2+, Fe2+, Fe3+, Hg2+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+ produced only minor changes in fluorescence values for the system. The apparent association constant (Ka) of Cu2+ binding in chemosensor 1 was found to be 5.55×103 M−1. The maximum fluorescence enhancement caused by Cu2+ binding in chemosensor 1 was observed over the pH range 5-7.5.  相似文献   

11.
The design and synthesis of a new pterin-based ratiometric and sensitive ‘naked-eye’ sensor R for highly selective recognition of acetate are reported. The acidic lactam NH and the NH of 2-N-pivaloyl group of receptor R along with 2,4-dinitrophenyl hydrazone group having the other acidic NH moiety lead to the binding of acetate anion in a 1:2 ratio by change of spectroscopic behavior on complexation (UV–vis and 1H NMR studies) which is also proven by Job plot. The sharp color change from light yellow to violet promises R to be a useful chromogenic ratiometric sensor for acetate amongst other common anions.  相似文献   

12.
The reaction-based fluorescent sensors have attracted increasing attention in the past decades. However, the application of these sensors for accurate sensing was significantly retarded by the background fluorescence from the sensors themselves. In this work, we demonstrated a novel strategy that the background fluorescence of the sensor could be completely eliminated by the combined effect of multiple fluorescence quenching groups. Based on this new strategy, as proof-of-principle study, a fluorescent sensor (CuFS) for Cu2+ was judiciously developed. In CuFS, three types of fluorescence quenching groups were directly tethered to a commonly used coumarin fluorophore. The fluorescence of coumarin fluorophore in CuFS was completely suppressed by the combined effect of these fluorescence quenching groups. Upon treatment with 22 μM Cu2+, sensor CuFS achieved a dramatic fluorescence enhancement (fluorescence intensity enhanced up to 811-fold) centered at 469 nm. The detection limits was determined to be 12.3 nM. The fluorescence intensity enhancement also showed a good linearity with the Cu2+ concentration in the range of 12.3 nM to 2 μM. By fabricating test strips, sensor CuFS can be utilized as a simple tool to detect Cu2+ in water samples. Furthermore, the fluorescent sensor was successfully applied in detecting different concentration of Cu2+ in living cells.  相似文献   

13.
A heterocyclic hydrazone ligand, pyridine-2-carboxaldehyde-2-pyridylhydrazone, HL, 1, was investigated as a new chromogenic agent for selective detection of Pd2+. The ligand HL, 1, undergoes 1:1 complexation with Pd2+ and Cu2+ to form complexes [Pd(L)Cl], 1a and [Cu(HL)Cl2], 1b respectively. The complex 1a gives a characteristic absorption peak at 536 nm with distinct reddish-pink coloration. The change in color can easily be distinguished from other metal complexes by the naked eye. No obvious interference was observed in the presence of other metal ions (Na+, K+, Mg2+, Ca2+, Al3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Hg2+, Pb2+). The association constants, Kass (UV–Vis), were found to be 5.52 ± 0.004 × 104 for 1a and 4.94 ± 0.006 × 104 for 1b at 298 K. On excitation at 295 nm, the ligand HL, 1 strongly emits at 372 nm due to an intraligand 1(π–π) transition. Upon complexation the emission peaks are blue shifted (λex 295 nm, λem 358 nm for 1a and λex 295 nm, λem 367 nm for 1b) along with a quenching (F/F0 0.32 for 1a and 0.88 for 1b) in the emission intensity. DFT and TDDFT calculations were highly consistent with the spectroscopic behavior of the ligand and complexes. The molecular structure of the complex 1b has been determined by single crystal X-ray diffraction studies.  相似文献   

14.
N-Allyl substituted 1,5-diphenyl-3-(4-N-methylaminophenyl)-2-penten-1,5-dione (1a) has been immobilized on a polystyrene backbone, on the surface of mercaptopropyl-functionalized silica or inside the cavities of zeolite NaY. These solids either in suspension or in films act as chemosensors of Fe3+ and other strong Lewis acid metal ions such as Cu2+ and Pb2+ in buffered water or ethanol. Brönsted acids in low pH aqueous solutions also produce the response of the sensor. For sensing of Fe3+, depending on the loading of 1a (typically from 2.5 to 0.5 wt%) the solids can test from 10−2 to 10−4 M aqueous solutions. The time response can vary from tens of minutes to below a minute depending on hydrophilic/hydrophobic nature of the support and also on the 1a loading. The solid sensor was reused up to 10 times by regenerating after every use the initial form with NaAcO treatment.  相似文献   

15.
A new ratiometric and exclusively selective fluorescent probe N-butyl-4,5-di[N-(phenyl)-2-(amino)-acetamino]-1,8-naphthalimide (1) was designed and synthesized on the basis of the mechanism of internal charge transfer (ICT). The probe 1 showed exclusively selectivity for CuII in the presence of a variety of other metal ions in aqueous ethanol solutions and the binding mode of probe 1 with CuII was 1:1 metal-ligand complex. Fluorescent emission spectra of probe 1 in the presence of CuII showed a 50 nm blue shift, which is from 521 nm to 471 nm. Furthermore, probe 1 shows the same fluorescent change with the CuII in living cells.  相似文献   

16.
Chemosensor based on Schiff base molecules (1, 2) were synthesized and demonstrated the selective fluoro/colorimetric sensing of multiple metal ions (Mn2+, Zn2+ and Cd2+) in acetonitrile–aqueous solution. Both 1 and 2 showed a highly selective naked-eye detectable colorimetric change for Mn2+ ions at 10−7 M. Fluorescence sensing studies of 1 and 2 exhibited a strong fluorescence enhancement (36 fold) selectively upon addition of Zn2+ (10−7 M, λmax = 488 nm). Fluorescence titration and single crystal X-ray analysis confirmed the formation of 1:1 molecular coordination complex between 1 and Zn2+. Interestingly, a rare phenomenon of strong second turn-on fluorescence (190 fold, λmax = 466 nm) was observed by the addition of Cd2+ (10−7 M) into 1 + Zn2+ or Zn2+ (10−7 M) into 1 + Cd2+. Importantly both 1 and 2 exhibited different fluorescence λmax with clearly distinguishable color for both Zn2+ and Cd2+.  相似文献   

17.
The preparation, characterization, and mesomorphic properties of two series of tridentate N-salicylidene-2-hydroxyanilines and their metal complexes were described. The crystal and molecular structure of bis[2-hydroxy-4-propyloxy-N-(2-hydroxy-3,4-dipropyloxybenzylidene) aniline]copper(II) were determined by means of X-ray analysis. It crystallizes in the monoclinic space group P2(1)/n and a Z=4. The geometry at Cu2+ ions is square pyramidal with a THF solvent molecule coordinated. The core structure was nearly flat, and the intramolecular Cu–Cu atoms were separated by ca. 3.0163(6) Å. All compounds 2a formed smectic C phases, and copper complexes 1aCu were not mesogenic. In contrast, compound 2e and complexes 1bCu, 1dCu, 1eCu, and 1ePd exhibited columnar phases. The lack of mesomorphism in 1eZn was attributed to a preferred tetrahedral over square planar geometry. A Ncell equal to 2.44–2.92, calculated from powder XRD data within a 9.0 Å thick indicated that an induced structure correlated by two catenar-shaped molecules was formed in Colh phases.  相似文献   

18.
The synthesis, characterization, and mesomorphic properties of a new series of Schiff bases 2a-h and metal complexes 1a-h-M are prepared and their mesomorphic properties studied. Two single crystallographic structures of 2d (n=12, m=1) and 1g-Pd (n=m=12) were determined by X-ray analysis. Both compounds crystallize in a triclinic space group P−1. A dimeric structure formed by intermolecular H-bonds in 2d was observed, giving nematic phase due to a better aspect ratio. The central geometry at Pd2+ ion is nearly perfect square plane. All Schiff bases 2a-h formed N or/and SmC phases. The formation of mesophases of complexes 1a-h-M was strongly dependent on metal ions incorporated. All Cu2+, Ni2+ and Pd2+ complexes exhibited N or/and SmC phase, respectively. However, Zn2+ and Co2+ complexes were not mesogenic. The lack of mesomorphism was probably attributed to a preferred tetrahedral geometry at Zn2+ and Co2+ over a square-planar geometry at Cu2+ and Pd2+.  相似文献   

19.
A novel fluorescence chemical sensor for the highly sensitive and selective determination of Pb2+ ions in aqueous solutions is described. The preliminary potentiometric and spectrofluorimetric complexation studies in solution revealed that the lipophilic ligand 5,8-bis((5′-chloro-8′-hydroxy-7′-quinolinyl)methyl)-2,11-dithia-5,8-diaza-2,6-pyridinophane (L2) forms a highly stable and selective [PbL2]2+ and [Pb(L2)2]2+ complexes which results in a strong fluorescence quenching of the ligand. Thus, a novel fluorescence Pb2+ sensing system was prepared by incorporating L2 as a neutral lead-selective fluoroionophore in the plasticized PVC membrane containing tetrakis(p-chlorophenyl) borate as a liphophilic anionic additive. The response of the sensor is based on the strong selective fluorescence quenching of L2 by Pb2+ ions. At pH 5.5, the proposed sensor displays a calibration curve over a wide concentration range of 3.0 × 10−7 to 2.5 × 10−2 M with a relatively fast response time of less than 5 min. In addition to high stability, reversibility and reproducibility, the sensor shows a unique selectivity towards Pb2+ ion with respect to common coexisting cations. The proposed fluorescence optode was successfully applied to the determination of lead in plastic toys and tap water samples.  相似文献   

20.
Two 4,5-disubstituted-1,8-naphthalimide derivatives 1 and 2 were synthesized as ratiometric fluorescent and colorimetric sensors for Cu2+, respectively. In 100% aqueous solutions of 1, the presence of Cu2+ induces a strong and increasing fluorescent emission centered at 478 nm at the expense of the fluorescent emission of 1 centered at 534 nm. Compound 2 senses Cu2+ by means of a colorimetric (primrose yellow to pink) method with a thorough quench in emission attributed to the deprotonation of the secondary amine conjugated to the naphthalimide fluorophore. 1-Cu2+ and 2-Cu2+ sense cyanide in ratiometric way via colorimetric and fluorescent changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号