首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A method of using high-speed counter-current chromatography (HSCCC) was established for preparative isolation and purification of antimycin A components from antimycin fermentation broth. Six antimycin A components were successfully purified for the first time by HSCCC with a two-phase solvent system composed of n-hexane–ethyl acetate–methanol–water (5:2:4:1, by volume). Total of 20 mg antimycin A4(a or b), 25 mg antimycin A3(a or b), 21 mg antimycin A8(a or b), 34 mg antimycin A2(a or b), 26 mg antimycin A1(a or b) and 34 mg antimycin A1(a or b) with the purities of 93.2, 98.6, 96.2, 94.1, 94.9 and 96.7%, respectively, determined by high-performance liquid chromatography (HPLC), were yielded from 200 mg crude sample only in one HSCCC run.  相似文献   

2.
The ultrafast vibrational phase relaxation of O–H stretch in bulk water is investigated in molecular dynamics simulations. The dephasing time (T2) of the O–H stretch in bulk water calculated from the frequency fluctuation time correlation function (Cω(t)) is in the range of 70–80 femtosecond (fs), which is comparable to the characteristic timescale obtained from the vibrational echo peak shift measurements using infrared photon echo [W.P. de Boeij, M.S. Pshenichnikov, D.A. Wiersma, Ann. Rev. Phys. Chem. 49 (1998) 99]. The ultrafast decay of Cω(t) is found to be responsible for the ultrashort T2 in bulk water. Careful analysis reveals the following two interesting reasons for the ultrafast decay of Cω(t). (A) The large amplitude angular jumps of water molecules (within 30–40 fs time duration) provide a large scale contribution to the mean square vibrational frequency fluctuation and gives rise to the rapid spectral diffusion on 100 fs time scale. (B) The projected force, due to all the atoms of the solvent molecules on the oxygen (FO(t)) and hydrogen (FH(t)) atom of the O–H bond exhibit a large negative cross-correlation (NCC). We further find that this NCC is partly responsible for a weak, non-Arrhenius temperature dependence of the dephasing rate.  相似文献   

3.
A series of Cr(III) dimers were synthesized from a parent compound [Cr2(μ-oxo)21,2-C4O4)2(H2O)4]·2H2O (I) by ligand substitution. The compounds have been analyzed using variable frequency EPR (9–110 GHz) and magnetic susceptibility as a function of field (0–9 T) and temperature (1.9–300 K) to obtain their electronic g-values, exchange energies, and zero-field parameters. The parent compound exhibits a broad maximum around 34 K characteristic of a dimer with antiferromagnetic coupling that fit the Van Vleck susceptibility model well. It was found that the maxima could be tuned from 34 to 80 K by ligand substitution of the waters. Each compound possesses a characteristic color spanning the range of teal to pink. The g-value of each compound was found to be ∼1.98 using spectral simulation. The DMSO derivative is water soluble and has a high LC50 for PC3 cancer cells, suggesting its use as a magnetic resonance imaging agent. X-ray crystal structure of the DMSO derivative [Cr2(μ-oxo)21,2-C4O4)2(C2H6SO)4]·2H2O (II) revealed that the DMSO ligands are equatorial, and the squarate groups bridge the two chromiums. This is in contrast to the previously proposed structure of the parent compound where the water ligands were axial and the equatorial squarate groups did not bridge the chromiums. These compounds are interesting because of their ease of synthesis, and their wide range of magnetic behavior. The compounds are good probes into antiferromagnetic dimer exchange by controlling the ligand field surrounding the superexchange pathway present in the molecule.  相似文献   

4.
A low toxic dispersive liquid–liquid microextraction (LT-DLLME) combined with gas chromatography–mass spectrometry (GC–MS) had been developed for the extraction and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in water samples. In normal DLLME assay, chlorosolvent had been widely used as extraction solvents; however, these solvents are environmental-unfriendly. In order to solve this problem, we proposed to use low toxic bromosolvent (1-bromo-3-methylbutane, LD50 6150 mg/kg) as the extraction solvent. In this study we compared the extraction efficiency of five chlorosolvents and thirteen bromo/iodo solvents. The results indicated that some of the bromo/iodo solvents showed better extraction and had much lower toxicity than chlorosolvents. We also found that propionic acid is used as the disperser solvent, as little as 50 μL is effective. Under optimum conditions, the range of enrichment factors and extraction recoveries of tap water samples are ranging 372–1308 and 87–105%, respectively. The linear range is wide (0.01–10.00 μg L−1), and the limits of detection are between 0.0003 and 0.0078 μg L−1 for most of the analytes. The relative standard deviations (RSD) for 0.01 μg L−1 of PAHs in tap water were in the range of 5.1–10.0%. The performance of the method was gauged by analyzing samples of tap water, sea water and lake water samples.  相似文献   

5.
Rev is an important HIV-1 regulatory protein that binds the Rev responsive element (RRE) within the env gene of HIV-1 RNA genome; the binding of Rev to RRE is essential for the expression of the structural genes, gag-pol and env, and for HIV replication. Here we report a quantum-dot (QD)-based nanosensor that can be used in fluorescence resonance energy transfer (FRET) assays of RRE IIB RNA-Rev peptide interactions. In comparison with conventional fluorescent dye-based methods, this QD-based nanosensor offers the distinct advantages of not inhibiting the Rev-RRE interaction, high sensitivity, improved accuracy, and simultaneous FRET-related two-parameter detection. This QD-based nanosensor provides a new approach to study the effects of inhibitors upon Rev-RRE interaction, and it may have a wide applicability in the development of new drugs against HIV-1 infection.  相似文献   

6.
7.
A dispersive liquid–liquid microextraction (DLLME) method followed by high-performance liquid chromatography–triple quadrupole mass spectrometry has been developed for the simultaneous determination of linear alkylbenzene sulfonates (LAS C10, C11, C12, and C13), nonylphenol (NP), nonylphenol mono- and diethoxylates (NP1EO and NP2EO), and di-(2-ethylhexyl)phthalate (DEHP). The applicability of the method has been tested by the determination of the above mentioned organic pollutants in tap water and wastewater. Several parameters affecting DLLME, such as, the type and volume of the extraction and disperser solvents, sample pH, ionic strength and number of extractions, have been evaluated. Methanol (1.5 mL) was selected among the six disperser solvent tested. Dichlorobenzene (50 μL) was selected among the four extraction solvent tested. Enrichment factor achieved was 80. Linear ranges in samples were 0.01–3.42 μg L−1 for LAS C1013 and NP2EO, 0.09–5.17 μg L−1 for NP1EO, 0.17–9.19 μg L−1 for NP and 0.40–17.9 μg L−1 for DEHP. Coefficients of correlation were higher than 0.997. Limits of quantitation in tap water and wastewater were in the ranges 0.009–0.019 μg L−1 for LAS, 0.009–0.091 μg L−1 for NP, NP1EO and NP2EO and 0.201–0.224 μg L−1 for DEHP. Extraction recoveries were in the range from 57 to 80%, except for LAS C10 (30–36%). The method was successfully applied to the determination of these pollutants in tap water and effluent wastewater from Seville (South of Spain). The DLLME method developed is fast, easy to perform, requires low solvent volumes and allows the determination of the priority hazardous substances NP and DEHP (Directive 2008/105/EC).  相似文献   

8.
2,2′-Bipyridine-N,N′-dioxide (bypO2 = L) complexes of the composition [UO2(bypO2)2(NO3)2]·2H2O (UO2–L2–NO3), [UO2(bypO2)2H2O](ClO4)2 (UO2–L2–ClO4) and [UO2bypO2(H2O)2SO4] (UO2–L–SO4) have been prepared by the reactions of the respective hydrated uranyl salts with the bypO2 ligand in water. The structures of the complexes were elucidated using elemental and thermal analyses, IR and luminescence spectroscopy as well as luminescence lifetime measurements. The IR spectra show that the bonding between uranium and bypO2, as well as uranium and water or a counter ion (NO3 and SO42−) is formed. The nitrate or sulfate groups coordinate to the central metal ions in a monodentate manner. From TG–DTA curves, the nature of the water molecules present in the complexes and the decomposition temperature of the dehydrated uranyl complexes were determined. The thermal stability of the anhydrous uranyl complexes increases in the series: (UO2–L2–NO3) < (UO2–L2–ClO4) < (UO2–L–SO4). All the compounds show green-yellow intense luminescence. The main fluorescence bands and the emission lifetimes in these complexes were determined. The luminescence spectra of all the prepared complexes differ from each other with respect to their peak maxima positions. The luminescence lifetimes also vary. The structure of the (UO2–L–SO4) complex was determined by X-ray single-crystal analysis.  相似文献   

9.
The capabilities of four commercially available and low cost polymeric materials for the extraction of polar and non-polar contaminants (log Kow = −0.07–6.88, from caffeine to octocrylene, respectively) from water samples was compared. Tested sorbents were polyethersulphone, polypropylene and Kevlar, compared to polydimethylsiloxane as reference material. Parameters that affect the extraction process such as pH and ionic strength of the sample, extraction time and desorption conditions were thoroughly investigated. A set of experimental partition coefficients (Kpw), at two different experimental conditions, was estimated for the best suited materials and compared with the theoretical octanol–water (Kow) partition coefficients of the analytes. Polyethersulphone displayed the largest extraction yields for both polar and non-polar analytes, with higher Kpw and lower matrix effects than polydimethylsiloxane and polypropylene. Thus, a sorptive microextraction method, followed by large volume injection (LVI) gas chromatography–tandem mass spectrometry (GC–MS/MS), was proposed using the former sorbent (2 mg) for the simultaneous determination of model compounds in water samples. Good linearity (>0.99) was obtained for most of the analytes, except in the case of 4-nonylphenol (0.9466). Precision (n = 4) at 50 and 500 ng L−1 levels was in the 2–24% and limits of detection (LODs) were in the 0.6–25 ng L−1 range for all the analytes studied.  相似文献   

10.
Homogeneous, transparent and crack-free P2O5–ZrO2 and P2O5–ZrO2–SiO2 membranes have been synthesized by the sol–gel process. A first step has been oriented to the optimization of the synthesis and characterization of different compositions by TGA, FE-SEM, FTIR and EIS to choose the best inorganic composition in terms of chemical and mechanical stability, and proton conductivity. The addition of SiO2 improves the mechanical and chemical stability. On the other hand, compositions with higher content in P2O5 have demonstrated lower mechanical and chemical stability against water, but higher proton conductivity. The water retention and high porosity of inorganic membranes leads to high proton conductivity, 10−2 S/cm, at 140 °C and 100% relative humidity. The second step has been focused in the study of doped inorganic membranes of molar composition 99.65(40P2O5–20ZrO2–40SiO2)–0.35PWA. The high homogeneity, transparency and SEM-EDX analysis of these membranes indicates no phase separation suggesting that PWA is well dispersed in the inorganic structure. The incorporation of PWA in sol–gel oxides provides an increase of the proton conductivity at low relative humidity due to the adequate distribution of PWA in the inorganic network. Conductivity increases in two orders of magnitude at low humidity (10−4 S/cm at 50 °C and 62% RH) compared with undoped sol–gel oxide membranes.  相似文献   

11.
A novel chromatographic process for purification of α1 proteinase inhibitor (α1-PI) from Cohn fraction IV-1 paste is described. This process has been successfully scaled up to 50-l columns. It involves DEAE chromatography, sulfopropyl (S) cation chromatography, tri-n-butyl phosphate (TNBP)–cholate treatment, a second S cation chromatography, freeze–drying and dry-heat. The process has been optimized for purity, yield, lipid removal, chemical usage and water consumption. Filtration after TNBP–cholate treatment plays a key role in ensuring a low lipid content in the final product. Pre-equilibration with high salt buffer is necessary to reduce the water consumption significantly during the ion-exchange chromatography equilibration step. The final product is approximately 95% pure by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, with a 64% to 70% yield from IV-1 paste.  相似文献   

12.
Han KC  Yu J  Yang EG 《Electrophoresis》2005,26(22):4379-4386
Human immunodeficiency virus type 1 (HIV-1) Rev protein is known to regulate the expression of proteins via binding to an RNA site termed the HIV Rev response element (RRE) presumably with a defined shape, mediated mainly by electrostatic interactions. We have developed a quantitative method based on CE-LIF detection for a systematic evaluation of interactions between a truncated RRE (tRRE) RNA and an HIV-1 Rev peptide. Employing a fluorescently labeled HIV-1 Rev protein fragment (RevF) as a probe, buffers were evaluated for the separation and detection as well as for the RNA shape-specific formation of the complex. Selection of an optimal buffer condition allowed us to perform quantitation of the tRRE-RevF complex formation and determine its dissociation constant. In addition, competitive inhibitions of the RNA-peptide interaction by some aminoglycosides were evaluated quantitatively by monitoring the complex peak, resulting in determination of IC(50) values. This sensitive and reliable CE-LIF-based method would be of interest in developing various screening systems for RNA interference in drug discovery.  相似文献   

13.
A rapid and simple method for the extraction and preconcentration of N-methylcarbamates (NMCs) (carbofuran, carbaryl and promecarb) in water samples using dispersive liquid–liquid microextraction (DLLME) using chemometrics was developed. Influence variables such as volume of extracting (CHCl3) and dispersing solvents (ACN), pH and ionic strength, extraction time and centrifugation time and speed were screened in a 27–4 Plackett–Burman design was investigated. The significant variables were optimized by using a central composite design (CCD) combined with desirability function (DF). At optimum conditions values of variables set as 126 μL chloroform, 1.5 mL acetonitrile, 1 min extraction time, 10 min centrifugation at 4000 rpm min−1, natural pH, 4.7% (w/v) NaCl, the separation was reached in less than 14 min using a C18 column and an isocratic binary mobile phase (acetonitrile: water (50:50, v/v)) with flow rate of 1.0 mL min−1. At optimum conditions method has linear response over 0.001–10 μg mL−1 with detection limit between 0.0001 and 0.0005 μg mL−1 with relative standard deviations (RSDs) in the range 2.18–5.06% (n = 6).  相似文献   

14.
An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe3O4NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe3O4/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe3O4NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4 V). The optimum working conditions for the sensor were pH 7.5, 35 °C, 600 μM substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1–40 nM, 0.1–50 nM, 1–50 nM and 10–100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10 nM for endosulfan. The biosensor exhibited good sensitivity (0.475 mA μM−1), reusability (more than 50 times) and stability (2 months). The sensor was suitable for trace detection of OP pesticide residues in milk and water.  相似文献   

15.
Design and fabrication of an ammonia sensor operating at room temperature based on pigment-sensitized TiO2 films was described. TiO2 was prepared by sol–gel method and deposited on glass slides containing gold electrodes. Then, the film immersed in a 2.5 × 10−4 M ethanol solution of cyanidin to absorb the pigment. The hybrid organic–inorganic formed film here can detect ammonia reversibly at room temperature. The relative change resistance of the films at a potential difference of 1.5 V is determined when the films are exposed to atmospheres containing ammonia vapors with concentrations over the range 10–50 ppm. The relative change resistance, S, of the films increased almost linearly with increasing concentrations of ammonia (r = 0.92). The response time to increasing concentrations of the ammonia is about 180–220 s, and the corresponding values for decreasing concentrations 240–270 s. At low humidity, ammonia could be ionized by the cyanidin on the TiO2 film and thereby decrease in the proton concentration at the surface. Consequently, more positively charged holes at the surface of the TiO2 have to be extracted to neutralize the adsorbed cyanidin and water film. The resistance response to ammonia of the sensors was nearly independent on temperature from 10 to 50 °C. These results are not actually as good as those reported in the literature, but this preliminary work proposes simpler and cheaper processes to realize NH3 sensor for room temperature applications.  相似文献   

16.
This paper, which is based on another recent work, (Mezzasalma, S. A.,Phys. Rev. E55(4), (1997)) deals with experiments and theory concerning an aqueous dispersed system formed from silicon nitride (Si3N4), alumina (Al2O3), and mixed silicon nitride + alumina (Si3N4+ Al2O3) solid agglomerates. From titration data applied to a thermodynamic equilibrium condition, the minimum number of each agglomerate species and their maximal average dimensions have been derived as functions of the aqueous solution pH. These parameters are of the order of, respectively, (1–2) μm for Si3N4and Al2O3agglomerates and (20–50) μm for the mixed agglomerates. The numbers of solid particles of all species are poorly correlated with changes in pH of the liquid phase. This behavior has been interpreted as intrinsically related to the complexity of the system which, due to the many interactions among the different species, probably becomes nondeterministic. In order to describe such behavior a probabilistic approach has been developed. The probability of finding a given solid agglomerate number within a scatter band varies with the suspension pH. Furthermore, the scatter band amplitude becomes negligible near the isoelectric point. Accordingly, only the numbers of aggregates derived in the neighborhood of the isoelectric point are predictable.  相似文献   

17.
A series of compounds that target reactive metal chelates to the HIV-1 Rev response element (RRE) mRNA have been synthesized. Dissociation constants and chemical reactivity toward HIV RRE RNA have been determined and evaluated in terms of reduction potential, coordination unsaturation, and overall charge associated with the metal-chelate-Rev complex. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) were linked to a lysine side chain of a Rev-derived peptide by either EDC/NHS or isothiocyanate coupling. The resulting chelate-Rev (EDTA-Rev, DTPA-Rev, NTA-Rev, and DOTA-Rev) conjugates were used to form coordination complexes with Fe(2+), Co(2+), Ni(2+), and Cu(2+) such that the arginine-rich Rev peptide could mediate localization of the metal chelates to the Rev peptide's high-affinity mRNA binding partner, RRE stem loop IIB. Metal complexes of the extended peptides GGH-Rev and KGHK-Rev, which also contain N-terminal peptidic chelators (ATCUN motifs), were studied for comparison. A fluorescence titration assay revealed high-affinity RRE RNA binding by all 22 metal-chelate-Rev species, with K(D) values ranging from ~0.2 to 16 nM, indicating little to no loss of RNA affinity due to the coupling of the metal chelates to the Rev peptide. Dissociation constants for binding at a previously unobserved low-affinity site are also reported. Rates of RNA modification by each metal-chelate-Rev species were determined and varied from ~0.28 to 4.9 nM/min but were optimal for Cu(2+)-NTA-Rev. Metal-chelate reduction potentials were determined and varied from -228 to +1111 mV vs NHE under similar solution conditions, allowing direct comparison of reactivity with redox thermodynamics. Optimal activity was observed when the reduction potential for the metal center was poised between those of the two principal co-reagents for metal-promoted formation of reactive oxygen species: E°(ascorbate/ascorbyl radical) = -66 mV and E°(H(2)O(2)/hydroxyl radical) = 380 mV. Given the variety of oxidative activities of these metal complexes and their high-affinity binding to the targeted RRE mRNA following coupling to the Rev peptide, this class of metal-chelate-Rev derivatives constitutes a promising step toward development of multiple-turnover reagents for selective eradication of HIV-1 RRE mRNA.  相似文献   

18.
The carbon coated Fe3O4 nanoparticles (Fe3O4/C) were synthesized by a simple hydrothermal reaction and applied as solid-phase extraction (SPE) sorbents to extract trace polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. The Fe3O4/C sorbents possess high adsorption capacity and extraction efficiency due to strong adsorption ability of carbon materials and large surface area of nanoparticles, and only 50 mg of sorbents are required to extract PAHs from 1000 mL water samples. The adsorption attains equilibrium rapidly and analytes are eluted with acetonitrile readily. Salinity and solution pH have no obvious effect on the recoveries of PAHs, which avoids fussy adjustment to water sample before extraction. Under optimized conditions, the detection limits of PAHs are in the range of 0.2–0.6 ng L−1. The accuracy of the method was evaluated by the recoveries of spiked samples. Good recoveries (76–110%) with low relative standard deviations from 0.8% to 9.7% are achieved. This new SPE method provides several advantages, such as high extraction efficiency, high breakthrough volumes, convenient extraction procedure, and short analysis times. To our knowledge, this is the first time that Fe3O4/C nanoparticles are used for the pretreatment of environmental water samples.  相似文献   

19.
A simple, precise, and accurate hydrophilic interaction liquid chromatographic (HILIC) method has been developed for the determination of five aromatic amines in environmental water samples. Chromatography was carried out on a bare silica column, using a mixture of acetonitrile and a buffer of NaH2PO4–H3PO4 (pH 1.5, containing 10 mM NaH2PO4) (85:15, v/v) as a mobile phase at a flow rate of 1 mL min−1. Aromatic amines were detected by UV absorbance at 254 nm. The linear range of amines was good (r2 > 0.998) and limit of detection (LOD) within 0.02–0.2 mg L−1 (S/N = 3). The retention mechanism for the analytes under the optimum conditions was determined to be a combination of adsorption, partition and ionic interactions. The proposed method was applied to the environmental water samples. Aromatic amines were isolated from aqueous samples using solid-phase extraction (SPE) with Oasis HLB cartridges. Recoveries of greater than 75% with precision (RSD) less than 12% were obtained at amine concentrations of 5–50 μg L−1 from 100 mL river water and influents from a wastewater treatment plant (WWTP). The present HILIC technique proved to be a viable method for the analysis of aromatic amines in the environmental water samples.  相似文献   

20.
Affinity capillary electrophoresis (ACE) and quantum mechanical density functional theory (DFT) calculations have been employed for investigation of non-covalent interactions between macrocyclic ligand, benzo-18-crown-6-ether (B18C6) and ammonium cation, NH4+. Firstly, by means of ACE, the strength of the B18C6-NH4+ complex in mixed binary hydro-organic solvent system, methanol–water (50/50, v/v), was determined from the dependence of effective electrophoretic mobility of B18C6 (corrected to reference temperature 25 °C and constant ionic strength, 10 mM) on the concentration of ammonium ion in the background electrolyte (BGE) using non-linear regression analysis. The logarithmic form of the apparent binding (stability) constant (log Kb) of B18C6-NH4+ complex in the above binary solvent system was found to be equal to log Kb = 1.63 ± 0.10. Secondly, the structural characteristics of B18C6-NH4+ complex were described by quantum mechanical density functional theory (DFT) calculations. According to these calculations, in the energetically most favoured form of the B18C6-NH4+ complex, three strong hydrogen bonds are formed between central ammonium ion and B18C6 ligand, one of them is directed to aryl-O-alkyl (Ar–O–CH2) ethereal oxygen and the other two hydrogen bonds are oriented to alkyl-O-alkyl (CH2–O–CH2) ethereal oxygen atoms of the macrocyclic crown ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号