首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A colorimetric and fluorescent cyanide probe bearing naphthol and sulfahydrazone groups has been designed and synthesized. This structurally simple probe displays a rapid response and high selectivity for cyanide in DMSO/EtOH (v/v = 2:8) solution. The addition of CN? to the sensor p-toluenesulfonyl-2-hydroxy-1-naphthylhydrazone (L3) induced a remarkable color change from pale-yellow to yellow, and green fluorescence changed to yellow. The 1H NMR titration and DFT calculations suggested that the selective sensing process is based on a nucleophilic addition reaction of cyanide to imine. Test strips based on sensor L3 were fabricated, which could act as a convenient and efficient test kit to detect CN? for “in-the-field” measurements.  相似文献   

2.
A simple quinoline derived probe 3 has been described. Probe 3 having aldehyde function upon interaction with cyanide undergo nucleophilic addition reaction to form cyanohydrin derivative 4 in which fluorescence intensity enhances significantly, ‘turn-on’ by photoinduced electron transfer (PET) OFF–ON mechanism. The color of probe solution switched-on to fluorescent blue which is visible to the naked-eye. Job’s plot analysis revealed a 1:1 stoichiometry for an interaction between 3 and cyanide along with detection limit 0.058 μM (1.5 ppb). The mode of interaction to detect cyanide in aqueous medium through a reaction based chemodosimeter approach has been confirmed by NMR, mass, FTIR, and DFT data analysis.  相似文献   

3.
A simple indole-based chemosensor (1) with a very low molecular weight of 207 g mol−1 has been synthesized for the highly reactive and selective detection of CN in aqueous media, even in the presence of other anions, such as F, Cl, Br, AcO, S2S2, SCN, NO2NO2, NO3NO3, CO3CO3, BzO, H2PO4H2PO4, and HSO4HSO4. The sensor achieves rapid detection of cyanide anion in 2 min, and the pseudo-first-order rate constant is estimated as 1.576 min−1. The colorimetric and ratiometric fluorescent response of the sensor to CN is attributable to the addition of CN to the electron-deficient dicyanovinyl group of 1, which prevents intramolecular charge transfer. The sensing mechanism is supported by density functional theory and time-dependent density functional theory calculations. Moreover, sensor 1 exhibits both high accuracy in determining the concentration of CN in real samples and 1-based test strips can conveniently detect CN without any additional equipment. The detection limit of the sensor 1 (1.1 μM) for cyanide is lower than the maximum permissible level of CN (1.9 μM) in drinking water.  相似文献   

4.
A colorimetric and fluorescent cyanide probe based on 7-(trifluoroacetamino)coumarin has been prepared. This structurally simple probe displays rapid response and high selectivity for cyanide over other common anions in the aqueous solution. The sensing of cyanide was performed via the nucleophilic attack of cyanide anion to carbonyl of the probe with a 1:1 binding stoichiometry, which could be confirmed by Job’s plot, 1H NMR, and MS studies. DFT/TDDFT calculations support that the fluorescence enhancement of the probe is mainly due to the ICT process improvement. The detection limit of the fluorescent assay for cyanide is as low as 0.3 μM in a rapid response of less than 30 s. Thus, the present probe should be applicable as a practical system for the monitoring of cyanide concentrations in aqueous samples.  相似文献   

5.
6.
We have successfully developed a ‘turn-on’ colorimetric chemosensor for Fe3+ based on 1,10-phenanthroline. An amide derivative of 1,10-phenanthroline 4 was developed for the selective recognition of Fe3+ over Co2+, Cr3+, Cu2+, Mn2+, Ni2+, Ag+ and Zn2+ and could measure Fe3+ concentration in the range of 15–210 μM by UV–vis spectroscopy. Moreover, the addition of Fe3+ to a colourless solution of 4 turned its colour to light pink, indicating that 4 is capable of detecting Fe3+ by the naked eye. Compound 4 exhibits a major absorption band centred at 268 which shifted to 278 nm after addition of Fe3+, and a shoulder band around 514 nm was also observed. The complexation of Fe3+ with 4 was analysed at a different pH and favourable binding was observed at pH 6.2.  相似文献   

7.
Cyanine dye Cy5 was used to be a probe for highly selective detection of trace cyanide in water by using a convenient two-phase strategy. The detection limit of both the fluorescent and colorimetric assay for cyanide is below 1.9 μM, the maximal allowance level for drinking water set by the World Health Organization.  相似文献   

8.
A new rhodamine-based chemosensor was synthetized through a modified copper-catalyzed [3+2]-cycloaddition of an azidocoumarin with an alkynyl-rhodamine. Its sensing properties toward various metal cations in aqueous solutions were investigated by colorimetric changes, UV–vis and fluorescence spectroscopies. The sensor exhibited a high selectivity for Cr2+ over Cr3+ and other divalent cations such as Cu2+, Mg2+, Zn2+, Ca2+, Cd2+, Co2+, Hg2+ and Ni2+. The linear range of detection by fluorescence spectroscopy is 0.07–3.5 mM, with a detection limit of ca. 64 μM. The binding mode of Cr2+ with the sensor was rationalized through experimental evidences.  相似文献   

9.
A new ESIPT-based fluorescent probe, PHC2, for the detection of hypochlorous acid has been rationally designed and developed. Endowed by the specific reaction between hypochlorous acid and phenyl azo group, PHC2 features high degree of selectivity and sensitivity for HClO with a low detection limit (13.2 nM) under physiological conditions in neutral aqueous solution.  相似文献   

10.
A new fluorescein-based chemodosimeter (II) for Hg2+ ion was designed and synthesized, and it displayed excellent selective and sensitive toward Hg2+ ion over other commonly metal ions in aqueous media. II was a colorless, non-fluorescent compound. Upon addition of Hg2+ to the solution of II, the thiosemicarbazide moiety of II would undergo an irreversible desulfurization reaction to form its corresponding oxadiazole (IV), a colorful and fluorescent product. During this process, the spirocyclic ring of II was opened, causing instantaneous development of visible color and strong fluorescence emission in the range of 500-600 nm. Based on the above mechanism, a fluorogenic Hg2+-selective chemodosimeter was developed. The fluorescence increase is linearly with Hg2+ concentration up to 1.0 μmol L−1 with a detection limit of 8.5 × 10−10 mol L−1 (3σ). Compared with the rhodamine-type chemodosimeter, II is more stable in aqueous media and exhibits higher sensitivity toward Hg2+. The findings suggest that II will serve as a practical chemodosimeter for rapid detection of Hg2+ concentrations in realistic media.  相似文献   

11.
12.
A 3,4-dimethylthieno[2,3-b]thiophene-based fluorogenic probe bearing benzo[d]-thiazole-2-thio unit (sodium 3,4-bis ((benzo[d]thiazol-2-ylthio)methyl) thieno [2, 3-b]thio-phene-2, 5-dicarboxylate) was developed as a novel fluorescent chemosensor with high selectivity towards Pb(II) over other cations tested. The new probe exhibited good water solubility and only sensed Pb(II) among metal ions examined in neutral 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer solution. The selectivity and sensitivity of fluorogenic probe to Pb(II) were discussed on the basis of experimental results.  相似文献   

13.
A novel 8-hydroxyquinoline derivative 3 was synthesized. Significant fluorescent quenching was found in the presence of Cu2+ and Hg2+ with notably higher selectivity for Cu2+ than Hg2+.  相似文献   

14.
A selective and sensitive fluorescent chemosensor for Hg2+, which was composed of two aminonaphthalimide fluorophores and a receptor of 2,6-bis(aminomethyl)pyridine, was synthesized through the reaction of 2,6-bis(chloromethyl)pyridine and N-[2-(2-hydroxyethoxy)ethyl]-4-piperazino-1,8-naphthalimide. The chemosensor showed an about 17-fold increase in fluorescence quantum yield upon addition of 1 equiv of Hg2+ in neutral buffer aqueous solution, and the other common metal ions did not notably disturb the detection of Hg2+.  相似文献   

15.
A new molecularly imprinted electrochemiluminescence (ECL) sensor was proposed for highly sensitive and selective determination of ultratrace Be2+ determination. The complex of Be2+ with 4-(2-pyridylazo)-resorcinol (PAR) was chosen as the template molecule for the molecularly imprinted polymer (MIP). In this assay, the complex molecule could be eluted from the MIP, and the cavities formed could then selectively recognize the complex molecules. The cavities formed could also work as the tunnel for the transfer of probe molecules to produce sound responsive signal. The determination was based on the intensity of the signal, which was proportional to the concentrations of the complex molecule in the sample solution, and the Be2+ concentration could then be determined indirectly. The results showed that in the range of 7 × 10−11 mol L−1 to 8.0 × 10−9 mol L−1, the ECL intensity had a linear relationship with the Be2+ concentrations, with the limit of detection of 2.35 × 10−11 mol L−1. This method was successfully used to detect Be2+ in real water samples.  相似文献   

16.
A novel bis-naphthalimidocalix[4]arene-Cu(II) supramolecular complex has been observed to provide an efficient recognition system for CN? ions in aqueous medium. The binding stoichiometry of bis-naphthalimidocalix[4]arene and copper ion has been found to be 1:1 while that for bis-naphthalimidocalix[4]arene-Cu(II) and cyanide ion it has been determined to be 1:2.  相似文献   

17.
Two 4,5-disubstituted-1,8-naphthalimide derivatives 1 and 2 were synthesized as ratiometric fluorescent and colorimetric sensors for Cu2+, respectively. In 100% aqueous solutions of 1, the presence of Cu2+ induces a strong and increasing fluorescent emission centered at 478 nm at the expense of the fluorescent emission of 1 centered at 534 nm. Compound 2 senses Cu2+ by means of a colorimetric (primrose yellow to pink) method with a thorough quench in emission attributed to the deprotonation of the secondary amine conjugated to the naphthalimide fluorophore. 1-Cu2+ and 2-Cu2+ sense cyanide in ratiometric way via colorimetric and fluorescent changes.  相似文献   

18.
A simple but highly selective coumarin-based fluorescence probe 1, 8-(1,3-dithiane)-7-hydroxycoumarin was designed and synthesized for both the ratiometric detection of Hg2+ and the on–off response to pH change in aqueous solution. The sensor detected Hg2+ selectively via Hg2+-promoted thioacetal deprotection reaction within five minutes and reflected pH in the range from 7.8 to 11.9 as a result of the equilibrium between weak-fluorescent acid form and strong-fluorescent base form. In addition, the probe has an excellent selectivity towards Hg2+ over other competitive metal ions for biomedical and environmental applications. The sensing behavior of our probe was studied by UV–visible absorption spectra and fluorescence spectra.  相似文献   

19.
A colorimetric and fluorescent fluoride probe bearing phenolic hydroxy and imine groups has been designed and synthesised. This receptor could visually and spectroscopically recognise F with high selectivity over other anions. After the addition of fluoride ions to the solution of ([1,1′-biphenyl]-4,4′-diylbis (azanylylidene)) bis (methanylylidene)) bis (naphthalen-2-ol) (TY), since the deprotonation reaction occurred between the sensor and fluoride, the fluorescence intensity of the solution changed significantly. Furthermore, the quenched fluorescence caused by fluoride ions could be recovered upon the addition of calcium ions to this complex solution. This resulted in an ‘OFF-ON-OFF’ type sensing. In particular, an IMP logic gate has been proposed using the output obtained from the fluorescence studies. The fluorescence, UV-vis titration and 1H NMR titration experiments indicated that the effects might occur via a combined process including hydrogen bond and deprotonation between the sensor and F.  相似文献   

20.
A fluorescent based receptor (4Z)-4-(4-diethylamino)-2-hydroxybenzylidene amino)-1,2dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (receptor 3) was developed for the highly selective and sensitive detection of Cu2+ and Zn2+ in semi-aqueous system. The fluorescence of receptor 3 was enhanced and quenched, respectively, with the addition of Zn2+ and Cu2+ ions over other surveyed cations. The receptor formed host-guest complexes in 1:1 stoichiometry with the detection limit of 5 nM and 15 nM for Cu2+ and Zn2+ ions, respectively. Further, we have effectively utilized the two metal ions (Cu2+ and Zn2+) as chemical inputs for the manufacture of INHIBIT type logic gate at molecular level using the fluorescence responses of receptor 3 at 450 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号