首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The magneto-optical properties of [{(Co45Fe45Zr10) Z (Al2O3)100−Z } X /(α-Si) Y ]40 multilayer nanoheterostructures with different thicknesses of granular ferromagnetic layers and semiconductor interlayers have been investigated. It is found that the composition layer thickness and the concentration of the ferromagnetic component affect significantly the Si interlayer formation.  相似文献   

2.
The morphology and the magnetic and conducting properties of an amorphous multilayer nanosystem [(Co45Fe45Zr10)35(Al2O3)65/a-Si:H]36 consisting of (Co45Fe45Zr10)35(Al2O3)65 magnetic layers and semiconducting hydrogenated amorphous silicon (a-Si:H) layers of various thicknesses have been studied. Using a combination of methods (including polarized neutron reflectometry and grazing incidence small-angle X-ray scattering), it is shown that the magnetic and electrical properties of these multilayer structures are determined by their morphology. It is established that the magnetization and electric resistance of a sample is a nonmonotonic function of the a-Si:H layer thickness. Both characteristics are at a minimum for a structure with a semiconductor layer thickness of 0.4 nm. Samples with silicon layer thicknesses below 0.4 nm represent a three-dimensional structure of Co45Fe45Zr10 grains weakly ordered in space, while in samples with silicon layer thicknesses above 0.4 nm, these grains are packed in layers alternating in the vertical direction. The average lateral distance between nanoparticles in the layer plane has been determined, from which the dimensions of metal grains in each sample have been estimated.  相似文献   

3.
Polarized neutron reflectometry was used to investigate the amorphous multilayer nanostructures [(Co45Fe45Zr10)x(Al2O3)100−x/a-Si:H]m, whose magnetic properties are dependent on the concentration of the magnetic constituent (x=34, 47 and 60 at%) as well as on the thicknesses of the metal-dielectric (Co45Fe45Zr10)x(Al2O3)100−x and semiconductor a-Si:H layers. The average magnetization of the individual magnetic layer is found to be inhomogeneous with the magnetically active central part and two magnetically dead parts at the interfaces.  相似文献   

4.
Films of composites (Co45Fe45Zr10)x(Al2O3)100–x, (Co84Nb14Ta2)x(SiO2)100–x, (Co41Fe39B20)x(SiO2)100–x and multilayer heterogeneous composite–composite structures {[(Co45Fe45Zr10)x(Al2O3)100–x]/[(Co45Fe45Zr10)x(Al2O3)100–x + N2]}n, {[(Co45Fe45Zr10)x(Al2O3)100–x]/[(Co45Fe45Zr10)x(Al2O3)100–x + O2]}n, {[(Co41Fe39B20)x(SiO2)100–x]/[(Co41Fe39B20)x(SiO2)100–x + O2]}n, and {[(Co84Nb14Ta2)x(SiO2)100–x]/[(Co84Nb14Ta2)x(SiO2)100–x + O2]}n have been deposited using the ionbeam sputtering method with a cyclic supply of reaction gases during deposition. The structure and magnetic properties of the films have been studied. It has been shown that the introduction of an oxidized interlayer makes it possible to suppress the perpendicular magnetic anisotropy in the (Co45Fe45Zr10)x(Al2O3)100–x composite with the metallic phase concentration higher than the percolation threshold.  相似文献   

5.
Co92Zr8(50 nm)/Ag(x) soft magnetic films have been prepared on Si (111) substrates by oblique sputtering at 45°. Nanoparticle size of Co92Zr8 soft magnetic films can be tuned by thickening Ag buffer layer from 9 nm to 96 nm. The static and dynamic magnetic properties show great dependence on Ag buffer layer thickness. The coercivity and effective damping parameter of Co92Zr8 films increase with thickening Ag buffer layer. The intrinsic and extrinsic parts of damping were extracted from the effective damping parameter. For x=96 nm film, the extrinsic damping parameter is 0.028, which is significantly larger than 0.004 for x=9 nm film. The origin of the enhancement of extrinsic damping can be explained by increased inhomogeneity of anisotropy. Therefore, it is an effective method to tailor magnetic damping parameter of thin magnetic films, which is desirable for high frequency application.  相似文献   

6.
The concentration dependences of the electrical resistivity and complex permeability of [“(Co45Fe45Zr10) x (Al2O3)100 − x ”/“α-Si: H”] n multilayer structures and (Co45Fe45Zr10) x (Al2O3)100 − x composites have been studied. It has been established that introduction of a semiconductor interlayer into the (Co45Fe45Zr10) x (Al2O3)100 − x composites substantially decreases the electrical resistivity of [“(Co45Fe45Zr10) x (Al2O3)100 − x ”/“α-Si: H”] n multilayer structures. The concentration dependences of the real and imaginary parts of the complex permeability of the [“(Co45Fe45Zr10) x (Al2O3)100 − x ”/“α-Si: H”] n nanomultilayer structures substantially differ from those of the (Co45Fe45Zr10) x (Al2O3)100 − x composites. The real part of the complex permeability of the [“(Co45Fe45Zr10) x (Al2O3)100 − x ”/“α-Si: H”] n nanomultilayer structures follows the curve with a minimum near the percolation threshold of the composite, and the imaginary part smoothly decreases as the ferromagnetic phase concentration increases. The results obtained are explained by the increase in the bifurcation temperature due to the conduction electrons of the semiconductor interlayer, which favor magnetic ordering of ferromagnetic grains.  相似文献   

7.
8.
The static and dynamic properties of multilayer structures [(Co45Fe45Zr10) m (Al2O3)100 − x ] x /(a-Si) y with various magnetic phase concentrations and for different thicknesses x and y were measured. It was shown that for samples with comparatively thick composite layers and thin interlayers (x/y > 8), the silicides that form play no significant role and the magnetic properties are determined by the composites. With an increase in the thickness of the interlayers, more granules form silicides. This reduces the concentration of the magnetic phase, influencing the samples’ resonance fields and magnetization.  相似文献   

9.
The elastic (G) and inelastic (Q ?1) properties of (Co45Fe45Zr10) x (Al2O3)100 ? x , Co x (CaF2)100 ? x , and Co x (PZT)100 ? x (x = 23–76 at %) nanocomposites obtained by ion-beam sputtering are studied in the temperature range 300–900 K. A significant rise in the Q Q ?1 (T) curve is observed at temperatures above 650 K, which is attributed to thermally activated migration of point defects under the conditions of confined geometry.  相似文献   

10.
Analysis of the X-ray absorption near-edge structure of (Co45Fe45Zr10)x(SiO2)1–x nanocomposites has shown the presence of interaction between atoms of the metallic and dielectric components in the nanocomposite. In this process, d-metal ions (Fe3+, Fe2+, Co2+) play the most active role. They interact with oxygen ions of the dielectric component and form not only Fe2O3 × CoO nanoferrites but also silicates of d metals.  相似文献   

11.
The electronic structure and phase composition of amorphous multilayered nanostructures (Co45Fe45Zr10/a-Si)40 and (Co45Fe45Zr10/SiO2)32 have been investigated by means of the X-ray absorption near-edge structure (XANES) technique, which is the most sensitive and useful in investigation of the chemical environment of elements in multicomponent nanostructures. The fact of interatomic interactions leading to the formation of composite “nanoferrite”-like FeO · Fe2O3 · ZrO2(CoO) was established. Also it was shown that in the mentioned nanoferrite there is an exchange interaction which involves not only two- and three-charged ions of iron (Fe2+ and Fe3+) but also ions like Zr4+ and, partially, Co2+. The transformation of the thin structure of L 2,3-ranges for the iron component of multilayered nanostructures in XANES spectra reflects on the change of the ratio of di- and trivalent ions in iron oxides as a part of the composite “nanoferrite.”  相似文献   

12.
The magneto-optical spectra of Co1+xFe2?xO4 show with increasing Co3+ content an increasing intensity of the 4A2 ? 4T1(F) and 4A2 ? 4T1(P) transition of Co2+ at 0.8 and 2.0 eV. A decrease in the Co2+-Fe3+ charge transfer transitions on octahedral sites is found. In the optical spectra a strong increase in optical absorption is found with dominant transitions at 0.8, 1.6 and 2.6 eV due to Co3+ crystal field transitions on octahedral sites and a Co2+-Co3+ charge transfer. Conversion Electron Mössbauer Spectroscopy has been used to determine the cation distribution in the surface layer of the samples. The results indicate a shift of Co2+ from octahedral to tetrahedral sites when Co3+ is substituted in CoFe2O4. This results in enhanced optical absorption, enhanced magneto-optical effects and a lower Curie temperature.  相似文献   

13.
The effect of oxygen-containing ambient arising at sputtering of granular nanocomposites (Fe0.45Co0.45Zr0.10) x (Al2O3)1−x (30 at.%≤x≤65 at.%) on their magnetic state and phase composition has been investigated. It was shown that the presence of oxygen resulted in the formation of oxide shells preventing the ferromagnetic interaction between Co0.45Fe0.45Zr0.10 nanoparticles and also the formation of metallic percolative net beyond the percolation threshold (as opposed to the films prepared in pure argon atmosphere).  相似文献   

14.
The electrical properties of (Co45Fe45Zr10)x(Al2O3)1−x granular nanocomposites have been studied. The concentration dependences of electrical resistivity are S-shaped (in accordance with the percolation theory of conduction) with a threshold at a metallic component concentration of ∼41 at. %. An analysis of the temperature behavior carried out in the range 300–973 K revealed that structural relaxation and crystallization of the amorphous phase are accompanied by a decrease in the electrical resistivity of the composites above the percolation threshold and by its increase below the percolation threshold. For metallic phase concentrations x<41 at. %, variable range hopping conduction over localized states near the Fermi level was found to be dominant at low temperatures (77–180 K). A further increase in temperature brings about a crossover of the conduction mechanism from Mott’s law ln(σ) ∝ (1/T)1/4 to ln(σ) ∝ (1/T)1/2. A model of inelastic resonance tunneling over a chain of localized states of the dielectric matrix was used to find the average number of localized states involved in the charge transport between metallic grains. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 11, 2004, pp. 2076–2082. Original Russian Text Copyright ? 2004 by Kalinin, Remizov, Sitnikov.  相似文献   

15.
The interatomic interaction and chemical state of elements in amorphous multilayered (Co45Fe45Zr10/a-Si)40 and (Co45Fe45Zr10/SiO2)32 nanostructures with different interlayers have been investigated by X-ray photoelectron spectroscopy using synchrotron radiation. The results of X-ray photoelectron spectroscopy investigations have demonstrated that, in surface layers of all the studied multilayered structures, the metallic layer components Co, Fe, and Zr are in the oxidized state. The silicon state is found to be identical and close to the state of nonstoichiometric silicon oxide, regardless of the presumed compositions of SiO2 and a-Si interlayers. After the removal of surface layers of the multilayered structures in the sample preparation chamber by ion etching, the metallic layer components Co, Fe, and Zr are predominantly in the elemental state.  相似文献   

16.
The superconducting property of Zr(1−x)Cox (x = 10–50 at.%) alloys and a Zr55Co30Al15 bulk metallic glass fabricated using techniques of rapid solidification was investigated. The Zr55Co30Al15 alloy crystallized by heat treatment in a vacuum atmosphere exhibited superconductivity of Tc,on = 2.4 K. This was attributable to the superconducting property of a crystalline Zr–Co alloy precipitated in the Zr55Co30Al15 alloy. The Tc,on of the crystalline Zr(1−x)Cox alloy was sensitive to the Co content. The increase of Co content for the Zr(1−x)Cox alloy led to the decrease of Tc,on. The Zr(1−x)Cox alloy exhibited superconductivity of a maximum Tc,on = 3.9 K for the Zr80Co20 alloy with superconducting nanocrystal particles embedded in the amorphous matrix.  相似文献   

17.
The field dependences of the thermopower of composites with Co and Co45Fe45Zr10 nanoparticles in the Al2O n insulator matrix are studied in magnetic fields up to 10 kOe at room temperature with compositions up to the percolation threshold (i.e., in the region where tunnel conductivity takes place). In composites obtained in argon, negative magnetothermopower (i.e., a decrease in the thermopower in strong magnetic fields) is observed, while positive magnetothermopower is observed in composites obtained in the atmosphere of argon and oxygen. It is shown that the theory developed for tunnel magnetothermopower in nanocomposites makes it possible to explain the results on a qualitative level in the case when the local density of electron states at the surface of nanoparticles depends on the sputtering conditions. Nanocomposites CoFeZr x (Al2O n )100?x ) obtained in argon and nitrogen display a strong asymmetry of magnetothermopower relative to the magnetic field direction; this anisotropy is associated with anisotropy of these nanostructures.  相似文献   

18.
Magnetic properties of amorphous and nanocrystalline Fe31Ni50Zr7B12, Fe31Ni40Co10Zr7B12 and Fe31Ni30Co20Zr7B12 alloys were studied by an unconventional “rf-Mössbauer” technique. Introduction of Co atoms into FeNiZrB alloy leads to a large increase of anisotropy field that suppresses the rf collapse effect. The rf induced crystallization effect observed in Co-containing alloys was attributed to the rf sidebands effect which induced in the alloys mechanical deformations via the magnetostriction. This effect is particularly strong in amorphous alloys and in nanocrystalline alloys containing significant fraction of amorphous matrix and is absent in Co-free alloy.  相似文献   

19.
The magnetic and magneto-optical properties of nanocrystalline Fe/Zr and Fe/Zr/Fe thin-film systems have been studied using the magneto-optical method. The strong effect of Zr layer thickness t Zr on the magnetic properties of Fe/Zr samples was discovered. It was found that the value of the saturation field of the Fe/Zr/Fe systems oscillates as a function of t Zr, which is explained by the oscillating character of the exchange interaction between ferromagnetic layers via a Zr spacer with the change in t Zr. It was established that the values of the transverse Kerr effect depend on the thicknesses of both magnetic and nonmagnetic layers.  相似文献   

20.
Magnetic and magnetotransport properties of multilayered nanostructures Co0.45Fe0.45Zr0.1/a-Si obtained by ion-beam sputtering are investigated. The temperature dependence of the resistance obeys a law of the form R xx ∝-logT, which is typical of metal-insulator nanocomposites on the metal side of the percolation transition. The magnetoresistance anisotropy effect, as well as the planar Hall effect, is observed for the first time for this type of nanocomposites in the vicinity of the percolation transition. The correlation of these two effects with the transverse (between Hall probes) magnetoresistive effect, which may reach 6–9%, is revealed. A weak negative magnetoresistance of the order of 0.15%, which is observed for subnanometer amorphous silicon layer thicknesses, is attributed to spin-dependent electron transitions between adjacent ferromagnetic layers in the case when the exchange interaction between these layers is of the antiferromagnetic type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号