首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Specific features of the kinetics of alkane and alkylbenzene oxidation with HOONO formed in the H2O2-NaNO2 system (pH 4.27) are quantitatively explained assuming the simultaneous occurrence of reactions in the gas and liquid phases. A model of the kinetic distribution method is developed and verified that accounts for the equilibrium distribution of a substrate and a reagent between phases and their interaction in both phases. Relative rate constants for the oxidation ofn-alkanes (C3-C8), isobutane, cyclopentane, cyclohexane, benzene, and alkylbenzenes are measured over a wide range of the volume ratios of the gas and liquid phases (λ = Vg/V1). Relative rate constants for the oxidation of alkanes in the gas phase and alkylbenzenes in gas and solution were determined. Similarity in substrate selectivities and kinetic isotope effects of the gasphase reactions of alkanes and arenes with peroxynitrous acid andOH radicals suggest that hydroxyl radical or the ˙OH...NO2 radical pair is an active species in the gas phase. In solution, alkylbenzenes react nonselectively with HOONO, as well as with ˙OH radicals. In contrast to the liquid-phase oxidation of arenes, the liquidphase oxidation of all alkanes under study insignificantly contribute (5–15%) to the overall rate of the substrate consumption.  相似文献   

2.
Short reaction chains participate in the oxidation of C3-C6, C8, C10, and C12 n-carboxylic acids. The quadratic-law recombination of peroxy radicals occurs both without and with chain termination. The ratio of the rate constants of these reactions increases to k′/k t = 4.5 on passing from propanoic acid to pentanoic acid, and then it decreases almost to zero for dodecanoic acid. The anomalous variation of the k′/k t ratio is explained by the fact that the radicals resulting from carboxylic acid oxidation at the CH bonds nearest to the functional group make different contributions to the recombination process, depending on the carbon chain length. The cross recombination of secondary hydrocarbon peroxy radicals with the HO2· radicals resulting from the oxidation of carboxylic acids at the β-C-H bonds proceeds without chain termination.  相似文献   

3.
Density functional theory was used to study gas-phase reactions between the Cp2*ZrMe+ cations, where Cp* = C5H5 (1), Me5Cp = C5Me5 (2), and Flu = C13H9 (3), and the ethylene molecule, Cp2*ZrMe+ + C2H4 → Cp2*ZrPr+ → Cp2*ZrAllyl+ + H2. The reactivity of the Cp2*ZrMe+ cations with respect to the ethylene molecule decreased in the series 1 > 32. Substitution in the Cp ring decreased the reactivity of the Cp2*ZrMe+ cations toward ethylene, in agreement with the experimental data on the comparative reactivities of complexes 1 and 3. The two main energy barriers along the reaction path (the formation of the C-C bond leading to the primary product Cp2*ZrPr+ and hydride shift leading to the secondary product Cp2*Zr(H2)Allyl+) vary in opposite directions in the series of the compounds studied. For Flu (3), these barriers are close to each other, and for the other compounds, the formation of the C-C bond requires the overcoming of a higher energy barrier. A comparison of the results obtained with the data on the activity of zirconocene catalysts in real catalytic systems for the polymerization of ethylene led us to conclude that the properties of the catalytic center changed drastically in the passage from the model reaction in the gas phase to real catalytic systems.  相似文献   

4.
The polyoxyethylene chain of non-ionic surfactant Triton X-100 [4-(1,1,3,3-tetramethylbutyl) phenyl polyethylene glycol,TX-100] was degraded by permanganate in the presence of HClO4. The oxidative degradation rate and cloud point have been obtained as a function of [surfactant], [permanganate], [HClO4], and temperature. Dependence of the reaction rate on adding inorganic salts (Na4P2O7, NaF and MnCl2) was also examined. The oxidation rate increased with increase in [TX-100] and [H+]. The higher order kinetics with respect to [TX-100] at lower [H+] shifted to lower order at higher [H+]. The cloud point of TX-100 (67°C) shifted to lower temperature (23±0.5°C) after oxidative degradation of the polyoxyethylene chain. Evidence of complex formation between TX-100 and MnO 4 was obtained spectrophotometrically. Presence of the primary alcoholic (–OH) group in the TX-100 skeleton is responsible for the degradation of oxyethylene chain. Both monomeric and aggregated TX-100 molecules are oxidized by permanganate. A catalytic oxidation mechanism is proposed on the basis of the experimental findings.  相似文献   

5.
Photodegradation of endocrine disrupting butylparaben (BP) in aerated aqueous solutions was studied using 4,4′,4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakis(benzenesulphonic acid) (TPPS4), as a sensitiser. Influence of various parameters, such as initial sensitiser and BP concentration, pH of the reaction solution and oxygen content in the reaction solution, on the photosensitised oxidation was examined. It was found that the dominant pathway of BP degradation occurred in the reaction with molecular singlet oxygen 1O2, i.e. via photosensitised oxidation mechanism of type II. Kinetic parameters of the BP reaction with 1O2 were estimated.  相似文献   

6.
The electrochemical properties of σ-ethynyl complexes of chromium subgroup metals were studied by cyclic voltammetry and preparative-scale electrolysis. The redox cycle of C5H5(CO)3CrC=CPh was shown to give the bis-carbyne complex (η5-C5H5)(CO)2Cr≡C-C(Ph)=C(Ph)-C-Cr(CO)25-C5H5) formedvia the reductive Cβ−Cβ coupling of ethynyl moieties. The influence of the nature of the metal atom and the ligand environment on the course of this reaction was considered. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1955–1958, October, 1998.  相似文献   

7.
In this research, the reforming of simulated natural gas containing a high CO2 content under AC non-thermal gliding arc discharge with partial oxidation was conducted at ambient temperature and atmospheric pressure, with specific regards to the concept of the direct utilization of natural gas. This work aimed at investigating the effects of applied voltage and input frequency, as well as the effect of adding oxygen on the reaction performance and discharge stability in the reforming of the simulated natural gas having a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20. The results showed marked increases in both CH4 conversion and product yield with increasing applied voltage and decreasing input frequency. The selectivities for H2, C2H6, C2H4, C4H10, and CO were observed to be enhanced at a higher applied voltage and at a lower frequency, whereas the selectivity for C2H2 showed an opposite trend. The use of oxygen was found to provide a great enhancement of the plasma reforming of the simulated natural gas. For the combined plasma and partial oxidation in the reforming of CO2-containing natural gas, air was found to be superior to pure oxygen in terms of reactant conversions, product selectivities, and specific energy consumption. The optimum conditions were found to be a hydrocarbons-to-oxygen feed molar ratio of 2/1 using air as an oxygen source, an applied voltage of 17.5 kV, and a frequency of 300 Hz, in providing the highest CH4 conversion and synthesis gas selectivity, as well as extremely low specific energy consumption. The energy consumption was as low as 2.73 × 10−18 W s (17.02 eV) per molecule of converted reactant and 2.49 × 10−18 W s (16.60 eV) per molecule of produced hydrogen.  相似文献   

8.
The precursors with a low manganese content ≤ 0.07% Mn were synthesized by spontaneous crystallization from Zn2+, Mn2+ and C2O4 2−-containing solutions. The initial ratio Zn2+:C2O4 2− = 1:1 and 1:2 influences the morphology and prevailing orientations of the crystallites in the oxalate samples. The presence of such small Mn content in the samples does not change the morphology or size of the crystals. The ZnO and Mn/ZnO oxides with manganese content from 0.51×10−2 to 15.1×10−2 Wt % are obtained after thermal decomposition of the oxalates. The oxides preserved the morphology of the precursors. The catalytic tests show that the pure ZnO has a poor activity for CO oxidation reaction. Its doping with Mn promotes the catalytic activity (up from twice to five times) in spite of the very low contents of the dopants. The observed increase of the activity depends on both dopant concentration and Zn2+:C2O4 2− ratio, probably due to the different mechanism of the manganese inclusion and different morphology of the oxides. The catalysts of the 1:2 series are more active in CO oxidation reaction.   相似文献   

9.
The oxidation of low concentration formaldehyde in air over Au/CeO2, prepared by co-precipitation, was investigated. Power-law kinetic models were proposed and the parameters were estimated, which are r = −0.46 × e −14612 / RTCHCHO(303 K < T < 363 K) and r = −295.78 × e −34178 / RT CHCHO (363 K < T < 413 K). The mechanism of the reaction at low temperatures might be different from that at high temperatures.  相似文献   

10.
A Ti/SnO2 + RuO2 + MnO2 electrode was prepared by thermal decomposition of their salts. Results from SEM and XPS analyses, respectively, indicate that the coating layer exhibits a compact structure and the oxidation state of Mn in the coating layer is +IV. The experimental activation energy for the oxygen evolution reaction, which increased linearly with increasing overpotential, is about 8 kJ⋅mol−1 at the equilibrium potential (η=0). The electrocatalytic characteristics of the anode are discussed in terms of ligand substitution reaction mechanisms (Sn1 and Sn2). It was found that the transition state for oxygen evolution at the anode in acidic solution follows a dissociative mechanism (Sn1 reaction). The Ti/SnO2 + RuO2 + MnO2 anode in conjunction with UV illumination was used to degrade phenol solutions, where the concentration of phenol remaining was determined by high-performance liquid chromatography (HPLC). The results indicate that the degradation efficiency of phenol on the anode can reach 96.3% after photoelectrocatalytic oxidation for 3 h.  相似文献   

11.
The characterization in the gas phase of the mechanisms responsible for hydride formation can contribute to the development of new materials for hydrogen storage. The present work provides evidence of a hydrogenation-dehydrogenation catalytic cycle for C60•− anions in the gas phase using methanol vapor at room temperature as hydrogen donor. The involvement of methanol in the reaction is confirmed by experiments using CD3OD and CD3OH. C60 hydride anions with up to 11 hydrogen atoms are identified via elemental composition analysis using FT-ICR mass spectrometry. For the longer reaction times, partial conversion of the C60 hydride ions into oxygen containing ion products occurs. Dehydrogenation using infrared multiphoton activation with a CO2 laser restores the C60•− anions.  相似文献   

12.
The multiphoton decomposition of CF3I with a pulsed CO2 laser has been studied at incident fluences of 0.6 and 1.2 J/cm2. The effect of pressure on the reaction probability for dissociation of CF3I was measured in the presence of added isobutane, Ar and CO2. In the experiments with isobutane, the CF3 radicals generated by the decomposition of excited CF3I react to yield CF3H in competition with the recombination to C2F6. The laser absorption cross section was also measured as a function of fluence at a pressure of 0.1 torr of CF3I and with 0.5–2.0 torr of added isobutane. The experimental results were modeled with a master equation in order to obtain information on the energy transferred by collisions of excited CF3I with the bath molecules. An energy dependent value of 〈ΔEd produces the best fit to the experimental data. Integration of the rate equations to account for the fractional product yield, [CF3I]/[C2F6], allowed for the calculation of the specific rate constant for hydrogen abstraction from isobutane by CF3 radicals. The value obtained is dependent on the total pressure and higher than expected at room temperature. From these results, an effective temperature for the reaction mixture was calculated. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Data on the selective oxidation of methane to synthesis gas on a 9% NiCuCr/2% Ce/(ϑ + α)-Al2O3 catalyst in dilute mixtures with Ar at short residence times (2–3 ms) are presented. The composition, structure, morphology, and adsorption properties of the catalyst with respect to oxygen and hydrogen before and after reaction were studied using XRD, BET, electron microscopy with electron microdiffraction, TPR, TPO, and TPD of oxygen and hydrogen. The following optimum conditions for the preparation and pretreatment of the catalyst for selective methane reduction were found: the incipient wetness impregnation of a support with aqueous nitrate solutions; drying; and heating in air at 873 and then at 1173 K (for 1 h at either temperature) followed by reduction with an H2-Ar mixture at 1173 K for 1 h. At a residence time of 2–3 ms (space velocity to 1.5 × 106 h−1) and 1073–1173 K, the resulting catalyst afforded an 80–100% CH4 conversion in mixtures with O2 (CH4/O2 = 2: 1) diluted with argon (97.2–98.0%) to synthesis gas with H2/CO = 2: 1. The selectivity of CO and H2 formation was 99.6–100 and 99–100%, respectively; CO2 was almost absent from the reaction products. The catalyst activity did not decrease for 56 h; carbon deposition was not observed. A possible mechanism of the direct oxidation of CH4 to synthesis gas is considered.  相似文献   

14.
Pyrolysis and TG Analysis of Shivee Ovoo Coal from Mongolia   总被引:2,自引:0,他引:2  
The coal sample of the Shivee Ovoo deposits has been non-isothermally pyrolysed in a thermogravimetric analyser to determine the influence of temperature, heating rate and purge gas employed on the thermal degradation of the sample. The heating rates investigated in the TG were 10–50 K min–1 to final temperature of 1000°C. N2or CO2 were employed as well as type of purge gas on the process of thermal degradation of the coal sample. The coal was also investigated in a fixed bed reactor to determine the influence of temperature and heating rate of the pyrolysis on the yield of products and composition of the gases evolved. The main gases produced were H2, CH4, C2H2, C2H4, C2H6, C3H6 and C3H8 and also minor concentrations of other gases. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The reactions of n-butane and an n-butane (80 mol.%)—isobutane (20 mol.%) mixture with but-2-enes in the presence of polycationic PdLaCaX faujasites were studied. Quantum-chemical calculation of the enthalpies of formation of alkanes C4—C8 and their cations showed that the reaction [Bnn]+ [Bui]+ is of crucial importance for the isomeric composition of the products of alkane alkylation. The general scheme of transformations of the hydrocarbons in the alkylation of n- and iso-paraffins was proposed based on the experimental data on the distribution of the C8 isomers in the catalyzate at different temperatures and duration of the reaction.  相似文献   

16.
《中国化学快报》2023,34(8):108090
Electrochemical oxidation of aqueous tris(1,3-dichloro-2-propyl) phosphate (TDCPP) by using Ti/SnO2-Sb/La-PbO2 as anode was investigated for the first time, and the degradation mechanisms and toxicity changes of the degradation intermediates were further determined. Results suggested that electrochemical degradation of TDCPP followed pseudo-first-order kinetics, and the reaction rate constant (k) was 0.0332 min−1 at the applied current density of 10 mA/cm2 and Na2SO4 concentration of 10 mmol/L. There was better TDCPP degradation performance at higher current density. Free hydroxy radical (OH) was proved to play dominant role in TDCPP oxidation via quenching experiment, with a relative contribution rate of 60.1%. A total of five intermediates (M1, C6H11Cl4O4P; M2, C3H7Cl2O4P; M3, C9H16Cl5O5P; M4, C9H14Cl5O6P; M5, C6H10Cl3O6P) were identified, and the intermediates were further degraded prolonging with the reaction time. Flow cytometer results suggested that the toxicity of TDCPP and degradation intermediates significantly reduced, and the detoxification efficiency was achieved at 78.1% at 180 min. ECOSAR predictive model was used to assess the relative toxicity of TDCPP and the degradation intermediates. The EC50 to green algae was 3.59 mg/L for TDCPP, and the values raised to 84, 574, 54.6, 391, and 8920 mg/L for M1, M2, M3, M4, and M5, respectively, indicating that the degradation intermediates are less toxic or not toxic. Electrochemical advanced oxidation process is a valid technology to degrade TDCPP and pose a good detoxification effect.  相似文献   

17.
Increasing environmental pollution caused by toxic dyes due to their hazardous nature is a matter of great concern. It has been generally agreed that methyl orange (MO) can be effectively degraded in aerated K2S2O8 homogeneous reaction system using near-UV irradiation. In this paper photocatalytic degradation of MO solutions with K2S2O8 was investigated, with particular attention on the possible underlying mechanisms. This report has shown decolorization efficiency of MO increases with the increasing of the dosage of the catalyst. There is no optimal amount of catalyst in our case, where special attention was paid on the nature of the photocatalyst itself. The current research revealed that the decolorization reaction is a pseudo first-order reaction when the concentration of MO is below 20 mg L−1 and the decolorization reaction is zero-order reaction when the concentration of MO is above 100 mg L−1, but the Langmuir-Hinshewood kinetic model does not describe this. The influence of IO4, BrO3 and H2O2 were investigated in detailed. Several observations indicate that the mechanism is not involved in hydroxyl radical attacks in MO degradation with K2S2O8 by UV irradiation. The possible underlying mechanisms are direct oxidation of the MO by S2O82− and hydrogen attraction by SO4•−.   相似文献   

18.
通过阳极氧化法和电化学沉积制备了TiO_2/CdSe异质结膜,并通过旋涂结合后续热处理的方法,在TiO_2/CdSe异质结膜上制备适量脱水态的聚乙烯醇(PVA)来提高TiO_2/CdSe异质结抗光腐蚀性能。采用XRD,SEM,FTIR,UV-Vis,PL,电化学测试,光催化降解罗丹明B等方法对样品的晶体结构、微观形貌、光电化学性能、光催化性能等进行了表征,并通过测定光降解体系中Cd2+的浓度,研究了纳米复合材料的抗光腐蚀性能。结果表明,与TiO_2/CdSe相比,TiO_2/CdSe/PVA纳米复合材料不仅具有更好的可见光光催化活性,还具有良好的可见光光催化稳定性和抗光腐蚀性能。同时,PVA的存在对光催化反应中的二次污染物Cd2+也有抑制作用。  相似文献   

19.
The reaction of the cyclopentadienyllutetium anthracenide, C5H5Lu(C14H10)2−(THF)2 (1), with azobenzene yielded the [C5H5(THF)Lu(μ−η22−PhN—NPh)]2(THF)2 (2) binuclear complex. The structure of the reaction product was established by X-ray structural analysis. The dynamic behavior of complex2 in a THF-d8 solution was studied by1H NMR spectroscopy in the temperature range of 265–330 K. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1667–1671, September, 1997.  相似文献   

20.
Monitoring the enforcement of an EU-wide ban of nitrofuran antibiotics in the food production chain is a challenging task, given the nature of nitrofuran compounds. The original and modified Fenton reactions are advanced oxidation processes that can eliminate the toxicity of nitrofurans. 2-(5-Nitrofuryl)acrylic acid (I) was degraded as a model compound by the original Fenton reaction with ferrous sulphate, by Mohr’s salt at pH 3 and 7, and finally by advanced Fenton process (AFP) (Fe0/H2O2/H2SO4). In addition, the growth inhibition of Escherichia coli, a G bacterium, was tested both before and after AFP treatment. The results showed that a small degradation efficiency of this treatment process led to the toxicity changes and that the toxicity of I after AFP treatment process decreased. It seems that the treatment of polluted water using the Fenton reaction and its modifications would be a suitable method for degradation of nitrofuran derivatives in polluted water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号