首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
本文设计合成了一种新型电子受体2,2-二甲基-1,3-茚二酮,并将其应用于热激活延迟荧光(TADF)分子的设计中,合成了一系列具有不同发光性能的TADF分子:5-二甲基吖啶基-2,2-二甲基-1,3-茚二酮(IDYD),5-吩噁嗪基-2,2-二甲基-1,3-茚二酮(IDPXZ)和5,6-二吩噁嗪基-2,2-二甲基-1,3-茚二酮(ID2PXZ)。以IDYD为客体掺杂制备得到蓝光OLED器件,其CIE值为(0.27,0.31),最大外量子效率(EQE)为2.13%。以IDPXZ为客体掺杂得到橙光OLED器件,其CIE值为(0.43,0.53),EQE为1.31%。以ID2PXZ为客体掺杂得到黄光OLED器件,其CIE值为(0.41,0.54),EQE为2.55%。上述结果证明了以2,2-二甲基-1,3-茚二酮为电子受体可以得到不同发光颜色的TADF分子,并在全色OLED器件中具有一定应用前景。  相似文献   

2.
激子(或自旋)统计是基本的物理原理,决定有机半导体器件中形成单线态与三线态激子的比例(1:3).近年来,基于新原理(三线态反系间窜越、延迟荧光)的OLED材料引起广泛关注.该类材料在理论方面重新催热了关于自旋统计的探讨,在应用方面有望发展成为低成本、高性能的新一代OLED材料,在国内相关领域得到重视,多个研究机构已布局开展相关研究.从目前的发展情况看,该类材料的发光机制、原理以及进一步材料设计思路还有待探讨和明确.鉴于此,本文综述了激子统计研究进展,分析了多种提高激子利用效率的途径,提出本课题组提高激子利用率的“热激子过程”新思路及杂化局域.电荷转移(HLCT)态材料设计原理,器件实现接近100%的激子利用效率.  相似文献   

3.
In the field of organic light-emitting diodes, thermally activated delayed fluorescence (TADF) materials have achieved great performance. The key factor for this performance is the small energy gap (ΔEST) between the lowest triplet (T1) and singlet excited (S1) states, which can be realized in a well-separated donor-acceptor system. Such systems are likely to possess similar charge transfer (CT)-type T1 and S1 states. Recent investigations have suggested that the intervention of other type-states, such as locally excited triplet state(s), is necessary for efficient reverse intersystem crossing (RISC). Here, we theoretically and experimentally demonstrate that our blue TADF material exhibits efficient RISC even between singlet CT and triplet CT states without any additional states. The key factor is dynamic flexibility of the torsion angle between the donor and acceptor, which enhances spin-orbit coupling even between the charge transfer-type T1 and S1 states, without sacrificing the small ΔEST. This results in excellent photoluminescence and electroluminescence performances in all the host materials we investigate, with sky-blue to deep-blue emissions. Among the hosts investigated, the deepest blue emission with CIE coordinates of (0.15, 0.16) and the highest EQEMAX of 23.9 % are achieved simultaneously.  相似文献   

4.
We present an overview over eight brightly luminescent Cu(I) dimers of the type Cu2X2(P∩N)3 with X = Cl, Br, I and P∩N = 2-diphenylphosphino-pyridine (Ph2Ppy), 2-diphenylphosphino-pyrimidine (Ph2Ppym), 1-diphenylphosphino-isoquinoline (Ph2Piqn) including three new crystal structures (Cu2Br2(Ph2Ppy)3 1-Br, Cu2I2(Ph2Ppym)3 2-I and Cu2I2(Ph2Piqn)3 3-I). However, we mainly focus on their photo-luminescence properties. All compounds exhibit combined thermally activated delayed fluorescence (TADF) and phosphorescence at ambient temperature. Emission color, decay time and quantum yield vary over large ranges. For deeper characterization, we select Cu2I2(Ph2Ppy)3, 1-I, showing a quantum yield of 81%. DFT and SOC-TDDFT calculations provide insight into the electronic structures of the singlet S1 and triplet T1 states. Both stem from metal+iodide-to-ligand charge transfer transitions. Evaluation of the emission decay dynamics, measured from 1.2 ≤ T ≤ 300 K, gives ∆E(S1-T1) = 380 cm−1 (47 meV), a transition rate of k(S1→S0) = 2.25 × 106 s−1 (445 ns), T1 zero-field splittings, transition rates from the triplet substates and spin-lattice relaxation times. We also discuss the interplay of S1-TADF and T1-phosphorescence. The combined emission paths shorten the overall decay time. For OLED applications, utilization of both singlet and triplet harvesting can be highly favorable for improvement of the device performance.  相似文献   

5.
以高精度的完全活化空间自洽场及二级微扰能量校正(CASPT2//CASSCF)电子结构计算为基础, 利用Förster和Dexter 2种模型, 建立了能量转移速率的数值模拟方案, 并将其用于2种典型的有机发光二极管发光分子Pt-4和FPt的光物理过程的计算, 结果发现, 蓝光态到红光态的能量转移和蓝光态到基态的辐射跃迁之间的竞争决定了发光颜色的浓度依赖性, 阐明了2个配合物溶液体系发射白光的微观机制. 通过比较2个配合物单体和双体不同电子态的结构和性质的差异, 对发光颜色与溶液浓度依赖性的微观本质给出了新的理论. 此外, 本文建立的能量转移速率模拟方案, 同时适用于其它激发态电子结构方法, 因此具有普适性.  相似文献   

6.
7.
New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes – due to their high adsorption and desorption capacities – have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.  相似文献   

8.
Many proteins contain iron as metal ion either within their own structures or bound to their active sites. These iron-containing proteins are involved in numerous biological processes and some of them serve as biomarkers of clinical pathologies, not only related to iron homeostasis but also to other physiological disorders. Thus, a variety of analytical strategies have been developed over the last years in order to conduct studies on Fe-containing proteins. Among them, mass spectrometric (MS) methods still remain as preferred tools since they provide the capabilities of structure elucidation together with quantitative possibilities. Therefore, in this work we have tried to summarize the most recent applications of elemental and molecular mass spectrometric-based methods for the characterization (mostly qualitative but quantitative in some cases) of the high abundant Fe-containing proteins used for clinical diagnosis.  相似文献   

9.
A comprehensive review of the development of assays, bioprobes, and biosensors using quantum dots (QDs) as integrated components is presented. In contrast to a QD that is selectively introduced as a label, an integrated QD is one that is present in a system throughout a bioanalysis, and simultaneously has a role in transduction and as a scaffold for biorecognition. Through a diverse array of coatings and bioconjugation strategies, it is possible to use QDs as a scaffold for biorecognition events. The modulation of QD luminescence provides the opportunity for the transduction of these events via fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), charge transfer quenching, and electrochemiluminescence (ECL). An overview of the basic concepts and principles underlying the use of QDs with each of these transduction methods is provided, along with many examples of their application in biological sensing. The latter include: the detection of small molecules using enzyme-linked methods, or using aptamers as affinity probes; the detection of proteins via immunoassays or aptamers; nucleic acid hybridization assays; and assays for protease or nuclease activity. Strategies for multiplexed detection are highlighted among these examples. Although the majority of developments to date have been in vitro, QD-based methods for ex vivo biological sensing are emerging. Some special attention is given to the development of solid-phase assays, which offer certain advantages over their solution-phase counterparts.  相似文献   

10.
A wide-ranging overview of room temperature phosphorescence in the liquid state (RTPL1) is presented, with a focus on recent developments. RTPL techniques like micelle-stabilized (MS)-RTP, cyclodextrin-induced (CD)-RTP, and heavy atom-induced (HAI)-RTP are discussed. These techniques are mainly applied in the stand-alone format, but coupling with some separation techniques appears to be feasible. Applications of direct, sensitized and quenched phosphorescence are also discussed. As regards sensitized and quenched RTP, emphasis is on the coupling with liquid chromatography (LC) and capillary electrophoresis (CE), but stand-alone applications are also reported. Further, the application of RTPL in immunoassays and in RTP optosensing—the optical sensing of analytes based on RTP—is reviewed. Next to the application of RTPL in quantitative analysis, its use for the structural probing of protein conformations and for time-resolved microscopy of labelled biomolecules is discussed. Finally, an overview is presented of the various analytical techniques which are based on the closely related phenomenon of long-lived lanthanide luminescence. The paper closes with a short evaluation of the state-of-the-art in RTP and a discussion on future perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号