首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mobil Composition of Matter No. 41 (MCM-41) containing Cu and Al with Si/Al ratios varying from 100 to 10 and 1 to 6 wt.% of Cu was synthesized under hydrothermal and impregnation conditions, respectively. The samples were characterized by nitrogen adsorption–desorption measurements, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS), temperature-programmed reduction (TPR), temperature-programmed desorption (TPD), and 29Si and 27Al magic-angle spinning–nuclear magnetic resonance (MAS–NMR) spectra. X-ray diffraction patterns indicate that the modified materials retain the standard MCM-41 structure. TPR patterns show the two-step reduction of Cu species. TPD study shows that Cu-impregnated Al-MCM-41 samples are more acidic than Al-MCM-41. From the MAS–NMR it was confirmed that most of the Al atoms are present tetrahedrally within the framework and some are present octahedrally in extraframework position. Impregnation of Cu shifted Al to the extraframework position. The catalytic activity of the samples toward hydroxylation of phenol in aqueous medium was evaluated using H2O2 as the oxidant at 80 °C. The effects of reaction parameters such as temperature, catalyst amount, amount of H2O2, and solvent were also investigated. Sample containing 4 wt.% copper-loaded Al-MCM-41-100 showed high phenol conversion (78%) with 68% catechol and 32% hydroquinone selectivity.  相似文献   

2.
Aluminum, iron and zinc containing MCM-41 molecular sieves were prepared by the hydrothermal method. The catalyst was characterized by the XRD, BET (surface area), FT–IR and 29Si, 27Al MAS–NMR techniques. The catalytic activity of these molecular sieves was tested with esterification reaction used with phthalic anhydride (PAH) and methanol (MeOH) in the autoclave at 135 °C, 150 °C and 175 °C. Conversion increases with an increase in temperature and mole ratio. The activity of these catalysts followed the order: Al-MCM-41 (112) > Fe-MCM-41 (115) > Al-MCM-41 (70) > Al-MCM-41 (52) > Fe-MCM-41 (61) > Al, Zn-MCM-41 (104) > Al-MCM-41 (30). The reaction yielded both monomethyl phthalate (MMP) and dimethyl phthalate (DMP). The nature of the catalyst sites has been proposed using with water as an impurity. The selectivity of the dimethyl phthalate increases with increase in temperature and mole ratio. The weight of the catalyst was optimized at 0.07 g. The hydrophilic and hydrophobic nature of the catalyst has been explained by the influence of water and the external surface acidity also facilitates the reaction and this has been confirmed by the supporting reaction.  相似文献   

3.
Abstract

Al-MCM-41 samples with various Si/Al ratios were prepared and then used to disproportionate methyltrichlorosilane (MTS) to produce dichlorodimethylsilane (DMCS). The catalysts were characterized by FT-IR, X-ray powder diffraction (XRD), 27Al magic angle spinning nuclear magnetic resonance (27Al MAS NMR), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and N2 absorption–desorption. It reveals that all samples show the hexagonal structure of MCM-41 and exhibit large BET surface areas (over 842 m2·g?1). FT-IR spectra of pyridine adsorption demonstrates that Al-MCM-41 samples have Lewis (L) and Brønsted (B) acidic sites, and the B acidic sites are stable in the temperature ranging from 423 to 623 K. The effects of aluminum content and temperature on the disproportionation reaction were also investigated. The results show that the Al-MCM-41 with the Si/Al ratio of 15:1 exhibits an excellent activity with 100% conversion of MTS and 47% selectivity of DMCS at 623 K under atmospheric pressure.  相似文献   

4.
Optically clear aluminosilicate gels of different chemical compositions (0–0.9 mole ratios of total Al/(Si + Al)) were prepared directly from solutions of inorganic aluminum salts, tetraethoxysilane, water and alcohol without the time-consuming sol forming. However, in these gels only 0–75% of total Al content was incorporated by chemical bonding into the gel network depending on the compositions of gels and the preparation conditions. The incorporation of aluminum atoms into the gel framework and the structure of wet gels were investigated by chemical analysis, 27Al magic angle spinning nuclear magnetic resonance, and small angle X-ray scattering. The present method may be most favourable for the preparation of aluminosilicate gels with 0.30–0.70 mole ratios of total Al/(Si + Al). At lower Al content acidic catalysis is required. Above 0.70 mole ratio homogeneous gels cannot be obtained by this method. The highest aluminum incorporation in homogeneous gel structures of various mole ratios of total Al/(Si + Al) was 0.53 mole ratio of bonded Al/(Si + Al) in contradiction to 0.1 mole ratio of Al/(Si + Al) achieved by traditional melting process of glass.  相似文献   

5.
本文用常温合成方法合成了不同硅铝比的Al-MCM-48,并研究了硅铝比不同对Al-MCM-48催化裂解高密度聚乙烯(HDPE)的影响.发现Al-MCM-48存在的催化裂解可以提高HDPE的转化率和液体收率;硅铝比的变化对转化率和液体收率有较明显的影响,转化率和液体收率随硅铝比的增加而增加,当硅铝比达到100时达最大值,然后液体收率和转化率开始逐步下降;液体产物中的烯烃的含量随硅铝比的增加而增加;重复实验表明Al-MCM-48具有较好的稳定性,不易结焦.  相似文献   

6.
In the synthesis of mesoporous molecular sieves of the type MCM-41, different cationactive surfactants and sources of silicon were used. Moreover, Al-MCM-41 samples with different content of aluminium were synthesized. MCM-41 and Al-MCM-41 were synthesized at elevated temperature in stainless-steel autoclaves. Prepared mesoporous molecular sieves were characterized by powder X-ray diffraction (XRD), physical adsorption of nitrogen at the temperature of −197°C, sorption capacity of benzene, and by infrared spectroscopy (FTIR). Acidity was measured for Al-MCM-41 by temperature programmed desorption of ammonia (TPDA) and by FTIR of adsorbed pyridine. Acid catalytic activity of Al-MCM-41 was tested by isomerization of o-xylene. Influence of the synthesis reproducibility, surfactant used, source of silicon, synthesis time, source of aluminium, and Si to Al mole ratio on the properties of mesoporous molecular sieves were evaluated.  相似文献   

7.
HPWA/MCM-41 mesoporous molecular sieves of appropriate ratios were prepared by loading HPWA on siliceous MCM-41 by the wet impregnation method. The prepared HPWA/MCM-41 materials were characterized by X-ray diffraction analysis (XRD) and BET surface area and FT-IR measurements. The morphology of mesoporous materials was studied by TEM observation. The catalytic activity of the above materials was tested for the condensation of dimedone (active methylene carbonyl compound) and various aromatic aldehyes under liquid phase conditions at 90 °C. The products were confirmed by FT-IR, 1H NMR and 13C NMR studies. HPWA supported MCM-41 catalysts catalyses efficiently the condensation of dimedone and aromatic aldehydes in ethanol and other solvents under liquid phase conditions to afford the corresponding xanthenedione derivatives. Activities of the catalysts follow the order: HPWA/MCM-41(20 wt.%) > HPWA/MCM-41(30 wt.%) > H3PW12O40·nH2O > HPWA/MCM-41(10 wt.%) > HPWA/SiO2 (20 wt.%) > HM (12) > Hβ (8) > Al-MCM-41 (50). Various advantages associated with these protocols include simple workup procedure, short reaction times, high product yields and easy recovery and reusability of the catalyst.  相似文献   

8.
高骨架铝含量Al-MCM-41的合成   总被引:10,自引:1,他引:10  
制备了不同Al含量的Al-MCM-41试样,其中Si/Al比值最小为3,即最高含铝量x~A~l=0.303。X射线粉末衍射(XRD)分析表明样品具有MCM-41的特征结构,氮气吸附研究表明,样品呈现Ⅳ型吸附等温线,具有孔径分布均一的中孔结构。文中还利用^2^7AlMASNMR研究了试样中Al的化学环境,结果表明,即使在高铝含量的情况下,样品中的铝原子仍以四配位结合在MCM-41的硅骨架上,未能检测出骨架外六配位铝的存在。文中还就Al含量对孔结构的影响以及Al-MCM-41形成机理作了讨论。  相似文献   

9.
The mesoporous Si-MCM-41 was synthesized by hydrothermal method and various wt.% (20 and 30 wt.%) of HPW were loaded on Si-MCM-41 by wet impregnation method. The synthesized Si-MCM-41 and HPW-loaded catalysts were characterized by XRD, BET surface area, FT-IR, TEM and TGA–DTG techniques. The catalytic activity of the catalyst was tested over the condensation reaction of aniline with various aromatic aldehydes at refluxing temperature under liquid-phase condition, which yields highly commercial product namely diamino triphenyl methanes (DATPMs). The effects of various parameters like catalyst, mole ratio, solvents and substituent effect on the formation of DATPMs were optimized. The catalytic activity of the catalysts showed the following order: H3PW12O40·nH2O > H3PMo12O40·nH2O > H4SiW12O40·nH2O > 20 wt.% HPW/MCM-41 > 30 wt.% HPW/MCM-41 > HM (12) > Hβ (8) > HY (4) > HZSM-5 (15) > Al-MCM-41 (25). The results showed that mole ratio of 4:1 (aniline:aldehyde) gave higher yield than the other mole ratios. Acetonitrile and ethyl acetate shows better activity especially in the supported materials than toluene was used as a solvent. The product thus obtained was analyzed by 1H NMR, FT-IR techniques.  相似文献   

10.
Aluminum-containing hexagonally ordered mesoporous silica Al-MCM-41 was synthesized by hydrothermal treatment of leached products produced by pre-grinding and subsequent acid leaching of natural kaolin, without addition of silica or aluminum regents. The resulting Al-MCM-41 had a high surface area of 1041 m(2)/g, a pore volume of 0.97 mL/g, and an average pore diameter of 3.7 nm with narrow pore size distribution centered at 2.7 nm. During the synthesis process of Al-MCM-41 from natural kaolin, the evolutions of chemical environments for Si and Al atoms should be emphasized. Wide angle X-ray diffraction (WAXRD), high-resolution transmission electron micrographs (HRTEMs), solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR), Fourier transform infrared spectroscopy (FT-IR) were used to trace the variations of chemical structures. Pretreatment of grinding and subsequent acid leaching acted as an important role in the whole synthesis process. NMR spectroscopy showed that Q(3) structure (Si(SiO)(3)(OH)), condensed Q(4) framework structure (Si(SiO)(4)), also the octahedral and tetrahedral Al existed in the leached sample and Al-MCM-41, with higher chemical contents of Q(4) structure and the octahedral Al in final product Al-MCM-41 than those in the leached sample. A possible mechanism for the formation of Al-MCM-41 from natural kaolin was suggested.  相似文献   

11.
张波  汤明慧  袁剑  吴磊 《催化学报》2012,33(6):914-922
采用浸渍法制备了Si-MCM-41和Al-MCM-41(Si/Al=50)介孔分子筛,SiO2,γ-Al2O3及MgO等负载的ZrO2催化剂,考察了其在以异丙醇为氢源苯甲醛Meerwein-Ponndorf-Verley(MPV)还原反应中的催化活性,并与纯ZrO2的催化活性进行对比.同时,采用X射线衍射、N2吸脱附法、X射线光电子能谱、紫外-可见漫反射光谱和吡啶原位吸附红外光谱等手段表征了催化剂.结果表明,ZrO2负载于Si-MCM-41,Al-MCM-41和SiO2后,催化活性明显提高,这归因于ZrO2与载体间存在强相互作用形成ZrOSi键,使催化剂表面ZrOH数量显著增多,Lewis酸中心强度增强,并出现Brnsted酸中心,三种催化剂的活性高低次序是5%ZrO2/Si-MCM-41>5%ZrO2/Al-MCM-41>5%ZrO2/SiO2.而5%ZrO2/Al2O3和5%ZrO2/MgO基本无催化活性,可归因为ZrO2与γ-Al2O3的弱相互作用使5%ZrO2/Al2O3的酸性与γ-Al2O3类似,ZrO2与MgO的强相互作用使5%ZrO2/MgO基本无酸性.  相似文献   

12.
Guo  Fang  Li  Jun  Li  Wanxi  Chen  Xiuling  Qi  Hongxue  Wang  Xiaoxiao  Yu  Yue 《Russian Journal of Applied Chemistry》2017,90(12):2055-2063

Al-MCM-41 materials were prepared with different Al contents and used as supports for NiW catalysts. The supports and catalysts were characterized by XRD, N2 adsorption-desorption, XPS, Raman, H2-TPR techniques. The XPS result showed that the Al added to MCM-41 promoted the dispersion of W and Ni species. The Raman result showed that the Al added to MCM-41 favored the formation of the suitable W species. The H2-TPR result showed that the Al added to MCM-41 can reduce the reduction temperature of W species on the catalysts. The hydrodenitrogenation (HDN) results showed that the HDN activity followed the order of NiW/Al-2 > NiW/Al-1 > NiW/Al-4 > NiW. Moreover, this tendency was also valid for the ratio of propylcyclohexane/propylbenzene (PCH/PB). The high HDN activity and PCH/PB ratio of NiW/Al-2 are due to the well dispersion of the W and Ni species, the suitable W species and the low reduction temperature of W species.

  相似文献   

13.
Mesoporous aluminosilicates (Al-containing NaMCM-41) were applied as catalyst supports for oxidative coupling of β-naphthol and substituted β-naphthols due to their remarkable features such as surface area, ordered mesopores and high thermal stability. The NaMCM-41 supported copper catalysts prepared by impregnation method, and Cu-NaMCM-41 was prepared by incorporating copper during synthesis. Oxidative coupling of β-naphthol reaction was studied using molecular oxygen as oxidant. The copper supported NaMCM-41 catalysts were prepared with different Si/Al ratios and calcined from 120 to 420 °C were observed to show varied product selectivity. The NaMCM-41 supported copper catalysts and Cu-NaMCM-41 were more active than the corresponding Cu/Fe supported on NaY zeolite. The catalysts were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), UV–DRS, ICPMS and BET surface area techniques and the reaction products were confirmed by 1H-NMR, FTIR and HRMS. An attempt has been made to explain the product selectivity of the catalysts discussed with the above techniques. The high dispersion of Cu+2 species observed in the catalysts having high Si/Al ratios in NaMCM-41 support and catalysts that are calcined at low temperatures, i.e. less than 420 °C, yielded an unexpected product perylene diol. A comparatively low dispersion of Cu+2 species, noticed in catalysts having low Si/Al ratios and calcined at high temperatures, yielded binapthol as the coupled product. The effect of the variation of catalyst and the solvent are also studied.  相似文献   

14.
Al-MCM-48 molecular sieves (Si/Al molar ratios = 25, 50, 75, and 100) were synthesized hydrothermally using cetyltrimethyl-ammonium bromide as the structure directing template. The orderly arrangement of mesopores was evident from the low angle X-ray diffraction patterns and transmission electron microscopy images. The catalytic performance of the materials was evaluated in the vapor phase isopropylation of phenol with isopropyl acetate. Phenol conversion decreased with the increase in the Si/Al ratio of the catalysts. The major reaction product was 4-isopropyl phenol with 78% selectivity. The delocalization of phenolic oxygen electron pair over the aromatic ring promoted para-selective alkylation. Such delocalization could be aided by the hydrophilic surface of the molecular sieves. Although an ester was used as the alkylating agent, phenyl isopropyl ether was not formed in the reaction.  相似文献   

15.
A one-pot four-component reaction of various types of aldehydes, acetophenone, malononitrile, and ammonium acetate was studied in the presence of perchlorated Al-MCM-41 (ClO 4 ? /Al-MCM-41) nanoparticles for the synthesis of 2-amino-3-cyanopyridines. Mesoporous Al-MCM-41 molecular sieves with the Si/Al molar ratios of 30, 40, and 50 were synthesized by the sol–gel method and ClO 4 ? /Al-MCM-41 with different calcination temperatures were prepared and characterized by SEM, TEM, XRD, FT-IR, potentiometric titration and, N2 adsorption-desorption techniques. The characterization results show that ClO 4 ? /Al-MCM-41 with calcination temperature of 300 °C has the best catalytic activity for the synthesis of 2-amino-3-cyanopyridines. The catalyst is reusable many times with moderate loss in its activity.  相似文献   

16.
以硅酸钠为硅源、硫酸铝为铝源、CTAB为模板剂,采用水热法合成了负载型固体酸Al-MCM-41中孔分子筛催化剂,并通过X射线衍射(XRD)、热重差热分析(TG-DTA)、扫描电镜(SEM)和红外(IR)方法对其进行了表征,同时研究了该催化剂在二芳基乙烷合成反应中的催化性能。考察了各种反应因素的影响,确定其最佳合成条件为:原料苯乙烯与二甲苯质量之比为1∶7.5,催化剂用量为1 %(总投料质量百分比),反应时间为3 h,反应温度为140 ℃,产率可达87.1 %,比传统催化剂浓硫酸提高了17 %。研究结果表明,该催化剂是替代液体酸合成二芳基乙烷的理想固体酸催化剂。  相似文献   

17.
AlMCM-41负载Ni催化剂的正十二烷加氢转化反应性能研究   总被引:1,自引:0,他引:1  
房克功  王锋  任杰  孙予罕 《化学学报》2003,61(11):1775-1780
采用N_2脱附、XRD,NH_3-TPD和H_2-TPR等手段表征中孔分子筛AlMCM-41负载 Ni催化剂。结果表明,AlMCM-41负载Ni后会导致中孔分子筛骨架部分塌陷,孔道有 序度降低,而且,Ni与载体的相互作用随着载体中铝含量的增加而增强。此外,催 化剂的表面酸性以弱酸和中强酸为主。正十二烷加氢转化反应评价表明,在催化剂 Si/Al比为17.4 ~ 38.7范围内,随着铝含量的减少,氢解副反应加剧,正十烷的 转化率逐渐升高,异构选择率则以先增加后减小的趋势变化,在Si/Al=23.2时达到 最大值。当Si/Al比为17.4时,催化剂的酸/金属功能呈现较好的匹配,正十二烷裂 解产物以C_6为中心呈对称分布且i/n-(C_4~C_9)比例较高。  相似文献   

18.
Catalytic steam reforming of acetic acid and hydroxyacetone (acetol) as model compounds of the aqueous fraction of bio-oil (biomass derived pyrolysis liquids) was studied in fluidized bed reactor over Ni/Al catalysts modified with calcium or magnesium. Attrition tests showed that the use of small quantities of these promoters improved the mechanical strength of the reforming catalyst. An optimum Ca/Al molar ratio of 0.12 and a Mg/Al molar ratio of 0.26 leaded to attrition rates of 0.22 and 0.27 wt%/h, respectively. Steam reforming experiments were performed at 650 °C and a steam to carbon molar ratio (S/C) of 5.58. The promoted catalysts showed different acetic acid steam reforming activities depending on the Ca/Al or Mg/Al molar ratios. Magnesium modified catalysts with a Mg/Al molar ratios of 0.26 and 0.50 showed good performances with almost no activity loss with time in contrast to the calcium modified catalysts that showed higher CO and CH4 yields. The addition of calcium generated a NiO phase with less interaction with the support. The highest H2 yield and carbon conversion in acetic steam reforming were obtained by a magnesium promoted catalyst with a Mg/Al ratio of 0.26, while the nonpromoted Ni/Al catalyst showed the best performance in acetol steam reforming. Then, the nature of the organic compound influenced the performance of the different catalysts.  相似文献   

19.
Mo-KIT-6 catalysts precursors obtained by direct hydrothermal synthesis using different Si/Mo molar ratios (10, 20, 30) were evaluated in the production of biodiesel from the transesterification of soybean oil with methanol. A 22 + 3PtCt factorial design was used to evaluate the influence of alcohol/oil and Si/Mo ratios on biodiesel yield. ANOVA statistical analysis showed that Si/Mo ratio was the most significant variable. The factorial design showed that the optimal conditions for maximizing the biodiesel yield are: using the 10_Mo-KIT-6 catalyst, and an alcohol/oil ratio of 20/1 at 150 °C for 3 h. However, using the 20_Mo-KIT-6 catalyst with an alcohol/oil ratio of 15/1 the biodiesel yield is close to the maximum, having the advantage of using a lower amount of methanol, which means that the separation of non-reacted alcohol will consume less energy.  相似文献   

20.
The selective catalytic oxidation of toluene with hydrogen peroxide over V-Mo-based catalysts under mild conditions was studied.The promotion effect of Mo on the catalysts was studied with V/Al2O3 and Mo/Al2O3 as reference samples.The catalysts were characterized by XRD,TPR,and XPS techniques.The results show that the addition of Mo to V/Al2O3 may change the distribution of V species on Al2O3 surface.Over V-Mo/Al2O3 catalyst,highly dispersed amorphous V species facilitates benzaldehyde formation,and crystalline V2O5 species increases the conversion of toluene but decreases the selectivity to benzaldehyde,while AlVMoO7 species favors both the conversion of toluene and the formation of cresols.The yield of benzaldehyde depends remarkably on the surface O/Al and Mo/V atomic ratios,and gets to a maximum value of 13.2% with a selectivity of 79.5% at an O/Al atomic ratio of 3.0 and Mo/V atomic ratio of 0.7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号