首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
作为最重要的还原产品,甲酸是 CO2还原中非常有价值的液体燃料.已有研究报道, Sn类金属电极对甲酸生成有很好的催化活性,所用电解液均为 KHCO3溶液(0.5 mol/L),但多数研究没有对其电解液条件的影响给出清晰解释.一般而言,电解液 pH值会影响 H2O和 CO2还原的电极电势,酸性环境有利于氢析出,碱性环境则不利于甲酸形成.在中性偏碱性环境, CO2电解可以提供维持氧化物稳定性的可能性.同时,电解质浓度也极大地影响甲酸形成.研究表明,当在固定床反应器中使用 Sn颗粒电极,在 KHCO3溶液(0.5 mol/L)中甲酸的法拉第效率比 K2CO3溶液(0.1 mol/L)的法拉第效率更大.我们研究组通过简单的水热自组装法成功制备了一种纳米结构 SnO2催化剂.其中 SnO2-50纳米催化剂由三维多级结构组成,为纳米颗粒和微米球的聚集体,其中含有直径为500 nm?1μm的高度多孔结构.该催化剂负载气体扩散电极用于 CO2电化学还原,表现出优异的 CO2还原催化活性和甲酸选择性.与其他文献报道相比,该电极具有明显的低过电位(?0.56 V vs. SHE).经研究发现,这与甲酸形成由传质和电荷传递过程控制有关,同时 CO2还原强烈依赖于电解液条件.此外,催化剂的电化学性能和甲酸选择性强烈依赖于电解液浓度.在0.5 mol/L KHCO3电解液中,当电解液浓度为0.1?0.5 mol/L时,催化性能随电解液浓度增加而提高,同时在电解液浓度为0.5 mol/L时催化性能达到最佳,获得56%的甲酸法拉第效率,这主要是由于 HCO3?直接参与反应的结果.在电解液浓度较低时,甲酸的形成由传质控制,而在电解液浓度较高时,甲酸的形成则由电荷传递控制.
  同时我们发现在形成甲酸过程中,电解液 pH值对 CO2电化学还原过程有很大影响.为了研究电解液pH值影响,重点考察了pH值分别为6,7,8.3和9时的电位值,其原因是酸性过高有利于氢气形成,碱度过高不利于甲酸形成.结果表明,pH =8.3的电解液为 CO2还原的最佳电解液条件.此外,在最负的电势下,电解液pH=8.3时,阴极电流密度比其他电解液都大,几乎是pH=6的电解液的2倍.此时在中性偏碱性环境下, CO2还原可以提供维持氧化物稳定性的可能性.当电解液 pH增加到9.0时,甲酸产量及法拉第效率略有下降,可能是碱性环境不利于甲酸形成.
  同时,对 SnO2-50纳米催化剂经28 h电解后的甲酸法拉第效率的衰减机制进行了深入研究.结果表明,随着电解时间延长,甲酸法拉第效率衰减.电解时间为1?28 h时,法拉第效率和甲酸产量均保持平稳下降趋势,28 h后法拉第效率由初始的56%降至24%.有文献报道,甲酸法拉第效率随电解时间的改变主要是由于阳极上甲酸的氧化或阴极上杂质的污染.为了证明阴极电解后的状态,我们对 SnO2-50/GDL阴极电解前后的 XPS谱进行了分析.结果发现,法拉第效率的下降是由于痕量氟离子沉积到 SnO2-50/GDL电极表面,这些痕量氟离子可能来自反应槽,阻碍电极表面 CO2电化学还原为甲酸.  相似文献   

2.
以无机盐SnCl_4·5H_2O为前驱体,CuCl_2为掺杂剂通过一步水热法制备了Cu掺杂SnO_2阴极材料.采用扫描电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)对该物质的形貌、晶型结构和元素组成及价态进行表征.在常温常压下于0.5 mol/L NaHCO3溶液中,通过循环伏安曲线、塔菲尔(Tafel)曲线和阻抗谱等考察了该阴极材料及其还原CO_2的性能.结果表明,该物质为金红石相SnO_2,且掺杂后晶粒减小,Cu~(2+)取代了SnO_2晶格中的Sn~(4+);当Cu掺杂量为1.5%时材料的催化活性最好.催化剂负载量为0.8mg/cm~2时,电流密度可达到3.5mA/cm~2,产甲酸的塔菲尔曲线斜率为55.1 mV/dec,最大法拉第效率约为23%,是纯SnO_2的12倍.  相似文献   

3.
《电化学》2017,(2)
传统上,RuO_2/TiO_2复合电极制备是通过在TiO_2/Ti基体上多次涂覆含Ru前驱体溶液和随后热分解(TD)来实现的.为克服上述方法中Ru用量大和利用率低之不足,本工作主要基于循环伏安法(CV)在TiO_2纳米管阵列(TNA)上电沉积RuO_2制备RuO_2~(CV)/TNA复合电极.SEM、GIXRD和CV结果表明,电沉积的RuO_2为无定型结构,所制备电极中的Ru用量约为传统的RuO_2~(TD)/TNA电极中Ru用量的1/30.尽管两电极催化CO_2还原产物的法拉第效率接近,但是RuO_2~(CV)/TNA电极比RuO_2~(TD)/TNA电极展示了更高的还原电流,较正的初始还原电位和更好的稳定性.与磷酸盐缓冲溶液中电还原CO_2相比,RuO_2~(CV)/TNA电极在0.1 mol·L~(-1) KHCO_3中电还原CO_2除生成更高法拉第效率的甲酸根和甲烷外,还检测到CO的生成.  相似文献   

4.
CO_2还原是一种解决温室效应以及能源短缺问题的有效方式.目前对于水溶液体系中的CO_2还原,主要有光催化、电催化以及光电催化等方法,其中还原CO_2法可在室温下进行,并较易实现大规模应用.由于金属电极在CO_2电催化还原过程中表现较高电流密度和催化性能,使得目前研究的热点集中于金属电极的修饰改性.金属Cu与H2,CO结合能力适中,并且对生成碳氢化合物具有较好的催化性能,因此其在催化CO_2还原中具有较大潜力.以往对于Cu的研究主要集中在表面修饰、调控表面结构以及制备合金等方向,其中对金属进行氧化后再还原的处理也是提高其催化活性的一种有效手段.氧化后还原得到的铜具有较大的粗糙度,且暴露的活性位点更多,对CO_2还原具有较好的催化活性.我们对铜箔在空气氛围下、300oC焙烧5 h,然后恒电位还原,再进行过渡金属Ni、Zn、Au的修饰,研究所得样品电催化还原CO_2性能.电极的表面形貌用扫描电镜表征,CO_2还原的液相和气相产物分别用核磁和在线气相色谱进行检测.修饰后电极的形貌没有发生太大变化,仍具有十分粗糙的表面结构.通过线性扫描伏安曲线可以看出,修饰Zn、Au后电流密度较未修饰前有明显增加,但是由于CO_2还原过程中不可避免地伴随析氢副反应,因此,我们通过计算产物的法拉第效率来表征修饰后的电极对产物选择性的改变:未修饰时,在-1.2至-1.6 V均可检测到甲酸的生成,电位负于-1.4 V时可以检测到乙醇和正丙醇.Ni的修饰明显提高了甲酸的法拉第效率,也促进了正丙醇的生成.-1.3 V时甲酸的法拉第效率为26.0%,-1.5 V时液相产物的法拉第效率为34.3%.在线气相色谱结果发现,Ni的修饰也明显提高了CO的法拉第效率,在-1.4 V下,CO的法拉第效率为44.6%.这可能是由于Ni(r=0.1246 nm)的原子半径比Cu(r=0.1278 nm)更小,因此Ni的修饰会使Cu发生晶格收缩、导致d带中心下移而降低了CO的结合能,从而更易生成CO和HCOOH;而修饰Ni后对CO_2还原产物正丙醇的提高可能是由于Ni的引入促进了C–C键的形成.修饰Zn后,甲酸的产率明显下降,在-1.6 V下甲酸的法拉第效率只有14.8%,但是乙醇与正丙醇的法拉第效率分别为1.6%与2.0%,相较于未修饰的电极略有提高.修饰Au后,液相产物甲酸及醇类的法拉第效率明显下降,在-1.5 V下,甲酸的法拉第效率只有7.9%,且只检测到少量的乙醇,未检测到正丙醇的生成,这可能与Au修饰后的电极对CO_2还原中间体CO的吸附较弱有关,生成的CO中间体更易从表面脱附,而难以被进一步还原.  相似文献   

5.
电催化还原二氧化碳制备甲酸是备受关注的热点问题。而电极材料是决定还原效率的重要因素。本文通过电沉积方法在泡沫铜上直接制备纳米结构硫化亚铜薄膜,并采用扫描电镜(SEM)、X射线衍射(XRD)对其结构性能进行了系统研究。以硫化亚铜作为阴极电催化材料、0.5 mol·L~(–1) 1-丁基-3-甲基咪唑四氟硼酸盐的乙腈溶液为电解液,在该体系中可高效催化转化二氧化碳为甲酸。结果表明,这一电解体系可有效实现电化学反应,甲酸的法拉第效率(FEHCOOH)可以达到85%,同时甲酸还原电流密度可达到5.3 mA·cm~(–2)。  相似文献   

6.
采用原位阳极氧化-煅烧法制备TiO_2纳米管(TiO_2NTs)电极,运用X射线衍射(XRD)、电场发射扫描电子显微镜(FESEM)、X射线光电子能谱(XPS)、双电位阶跃测试等对制备电极进行表征,考察了其在0.1mol?L~(-1) KHCO_3水溶液中电化学还原CO_2的催化活性。结果表明TiO_2NTs电极上电化学还原CO_2的主产物为CH_3OH,CH_3OH由HCOOH和HCHO进一步还原而来。电极制备的最佳煅烧温度为450℃(TiO_2NTs-450),电解电位-0.56 V(vs RHE(可逆氢电极))时反应120 min后,生成CH_3OH的法拉第效率和分电流密度分别为85.8%和0.2 m A?cm~(-2)。与550和650℃煅烧的电极相比,TiO_2NTs-450电极具有更高的催化活性,归因于电极表面更多的三价钛活性位,有利于CO_2吸附,从而对·CO_2-起到稳定的作用,速率控制步骤转变为·CO_2-的质子化反应。  相似文献   

7.
电催化还原二氧化碳制备甲酸是备受关注的热点问题。而电极材料是决定还原效率的重要因素。本文通过电沉积方法在泡沫铜上直接制备纳米结构硫化亚铜薄膜,并采用扫描电镜(SEM)、X射线衍射(XRD)对其结构性能进行了系统研究。以硫化亚铜作为阴极电催化材料、0.5 mol·L-1 1-丁基-3-甲基咪唑四氟硼酸盐的乙腈溶液为电解液,在该体系中可高效催化转化二氧化碳为甲酸。结果表明,这一电解体系可有效实现电化学反应,甲酸的法拉第效率(FEHCOOH)可以达到85%,同时甲酸还原电流密度可达到5.3 mA·cm-2。  相似文献   

8.
在板框式循环电解槽中,以KOH为电解质,KI为催化剂,石墨电极分别为阳极和阴极,研究电化学间接氧化2-丁酮合成乙偶姻中间体α-羟基缩酮,讨论电流密度、极板间电解液流速、电解液中2-丁酮浓度、电解温度以及通电量等电解条件对中间体收率和电流效率的影响,经优选工艺条件为:电流密度40 mA·cm-2,流速6.4 cm·s-1,2-丁酮浓度1.75 mol·L-1,电解温度30℃,通电量为1.5 F·moL-1时,中间体收率可达78.9%,电流效率40.1%. 循环伏安测试结果表明,电解时碘离子在阳极氧化生成碘单质,甲醇在阴极还原生成甲氧基负离子,原料2-丁酮与电解产物反应,并最终生成乙偶姻中间体.  相似文献   

9.
采用低温水热合成法制备了碳纸基底的SnO2气体扩散电极(SnO2/GDE), 并对其物化特性与催化还原CO2产甲酸性能进行了研究. 扫描电子显微镜、 X射线衍射及X射线光电子能谱表征结果表明, 在60, 75, 100 ℃下制备的催化剂均为分散性良好的纳米SnO2粉体, 其粒径分别为7.9, 11.8和12.9 nm. 循环伏安、 线性扫描伏安和电化学交流阻抗测试结果显示电极均具有优异的电催化活性, 其电化学活性表面积分别为150, 470, 240 cm 2, 通过等效电路拟合后电阻分别为8.5, 3.9, 6.6 Ω·cm 2. 在-1.8 V(vs. SCE)电位下电解, 通入电量500 C时, 电极都具有较高电催化还原CO2产甲酸性能, 而75 ℃下制备的电极性能最佳, 产甲酸电流密度为22.8 mA/cm 2 , 产甲酸法拉第效率高达93.5%; 该电极经过20 h长时间电解后, 产甲酸电流密度可维持在12.8 mA/cm 2 , 产甲酸法拉第效率稳定在约65%.  相似文献   

10.
采用商品化氧化铟锡(ITO)导电玻璃、纳米SnO_(2)水胶体分散液,通过旋涂法制备了高性能SnO_(2)/ITO电极,考察了SnO_(2)旋涂浓度、旋涂量、Triton X-100浓度、煅烧温度对SnO_(2)/ITO电极性能的影响,并优化了缓冲体系、pH、浓度及偏压条件。结果表明,当SnO_(2)水胶体分散液浓度15%、Triton X-100浓度0.01%、煅烧温度450℃时,制备的SnO_(2)/ITO电极具有较高的热稳定性和光电化学性能;草酸-草酸钠缓冲体系有利于光电流的产生,当草酸浓度为30 mmol/L(pH 6.0)、偏压为0.5 V时,可以产生较高的稳态光电流信号,以Ru(bpy)_(2)(dppz)^(2+)为光电化学信号探针,检测限为10 nmol/L。考察了ITO电极的性能差异性,同一批次及不同批次之间的光电流信号一致性相对标准偏差(RSD)在3.9%~5.6%之间。  相似文献   

11.
杨改秀  邓玲娟  唐亚文  陆天虹 《应用化学》2009,26(12):1476-1479
用X射线能谱(EDS)、X射线衍射(XRD)和电化学等测试技术研究了电解液中的磷钨酸(PWA)对甲酸在碳载Pt(Pt/C)催化剂电极上氧化的促进作用。 结果表明,PWA不但能提高甲酸在Pt/C催化剂电极上氧化的电催化活性,而且也能提高其电催化稳定性。 这种促进作用与电解液中PWA的浓度有关,当电解液中PWA的质量浓度为0.10 g/L时,这种促进作用最佳。 这主要是由于电解液中PWA质量浓度>0.10 g/L时,吸附到电极表面的PWA的量太多,占据了Pt/C催化剂电极中Pt表面的部分活性位点,从而降低了催化剂的电催化性能。  相似文献   

12.
采用自制的H型电解池开展了KHCO3溶液中电化学还原CO2制甲酸的研究. 研究发现,在电解池中长时间电解时阴阳两极间的电压(槽电压)会持续升高,导致电解过程不可持续. 经过恒电位电解、恒电流电解、pH测试以及电解前后阳极室KHCO3浓度分析等实验研究,作者发现,这是由以下过程引起的:阳极上的析氧反应产生的H+与电解液中的HCO3-反应生成水和CO2,导致阳极室的HCO3-的消耗,之后阳极室的K+被迫扩散进入阴极室而导致阳极室电解质浓度下降. 因此,阳极室电解液导电性下降,进而引起阳极电位的升高. 研究发现,阳极电解液具有碱性时,都可能发生此种现象,因此,为了保证电解过程可持续且保持高的能量转换效率,阳极液的电解质不能是任何具有碱性的物质.  相似文献   

13.
双醛淀粉制备中,影响电氧化IO3-转化生成IO4-过程的因素是比较复杂的,在自制的电解反应器中,以碘酸钠为原料,研究了IO3-转化生成IO4-过程.考察了各种因素对转化率和电流效率的影响.在选定的实验条件下,恒电流操作,阳极为DSA电极,阴极为纯钛电极,阴极液为0.2mol/L的 H2SO4溶液,隔膜为聚乙烯异相阳离子交换膜;阳极室中NaIO3起始浓度为0.3mol/L,H2SO4起始浓度为0.2mol/L,电流密度为0.025A/cm2,电解时间2h,IO3-的转化率为53.54%,电流效率为86.1%.  相似文献   

14.
石油、天然气和煤等化石能源的转化利用不可避免排放大量的CO_2,造成一系列生态和环境问题.CO_2电化学还原可以在温和反应条件下将CO_2转化为CO或甲酸等,近年来受到研究者广泛关注,但因CO_2具有很稳定的化学结构,CO_2电化学还原要求催化剂具有高的活性,选择性和稳定性.贵金属如金和钯可以有效地将CO_2转化为相应的燃料如CO和甲酸等,但贵金属昂贵的价格限制了其大规模应用,所以迫使人们寻找非贵金属催化剂来替代它们.铟及其合金被应用于CO_2电化学还原生成甲酸,但在低过电位下,这些催化剂的电流密度和选择性都不理想.铜基催化剂也能催化CO_2电化学还原生成甲酸,但在短时间内稳定性较差.因此,需要进一步提高In和Cu催化剂上CO_2电化学还原的电流密度和稳定性.一种可能的解决方案是构建Cu-In双金属催化剂,通过两者的协同作用,有望提升在低过电位下CO_2电化学还原生成甲酸的电流密度和稳定性.在本工作中,我们通过氢气模板法制备出具有树枝状结构的Cu,然后在其表面均匀电沉积金属In.通过两步电沉积法制备出一种具有树枝状结构的Cu-In二元金属催化剂.控制电沉积In的时长分别为1.5,7.5,15,30和60 min.根据SEM及EDX元素分布图谱可知,随着电沉积In时间的增加,In在Cu表面的覆盖率逐渐增高.我们还研究了In的电沉积时间与其电化学活性表面积(ESA)之间的关系.结果表明,In的电沉积时间与其电化学活性表面积成正比,且当电沉积时间达到30 min时,电极具有最大的电化学活性表面积.具有树枝状结构的Cu-In-30催化剂ESA数值为8.7 cm~2,而不具备树枝状结构的In-30催化剂的ESA数值仅为2.4 cm~2.在-0.65 V vs.RHE至-1.05 V vs.RHE电位窗口中,与其它催化剂相比,Cu-In-30催化剂上CO_2电化学还原生成甲酸的法拉第效率最高可达87.4%.树枝状结构的Cu-In-30催化剂由于具有开放的三维结构,所以能够暴露出更多的活性位,从而提高了催化剂的电化学性能.在-0.85 V vs.RHE电位下,甲酸分电流密度可达42.0 m A cm~(-2),且具有较高的电化学稳定性(12 h).而不具有树枝状结构的In-30催化剂生成甲酸的法拉第效率为57.0%,且甲酸分电流密度为4.6 m A cm~(-2).  相似文献   

15.
研究了Ti/Ru-Ti-Sn,Ni,Ti/PbO_2,Pt和Ti/BDD(钛基掺硼金刚石电极)5种电极的析氧情况及对糠醛电化学氧化成糠酸的催化作用,得出氧化的最佳电极为Ni.以糠醛为原料,Ni电极为阳极,Cu电极为阴极,成对电合成糠醇和糠酸,研究了溶液p H值、电流密度、糠醛浓度、温度及电解时间对反应的影响.结果表明,溶液pH=11,阴极电流密度为2 mA/cm~2,阳极电流密度为1 mA/cm~2,糠醛浓度为0.1 mol/L,温度为25℃时,经过优化,总的电流效率最佳为130%.  相似文献   

16.
HCO_3~-浓度对油气田中CO_2腐蚀的影响   总被引:2,自引:0,他引:2  
张国安  路民旭  吴荫顺 《电化学》2005,11(4):387-392
应用动电位扫描和失重法研究HCO3-对油气田CO2腐蚀的影响.实验表明,当HCO3-浓度低于0.042 mol/L时,随着HCO3-浓度的增加,溶液pH升高,H+的还原速率(阴极电流密度)下降;HCO3-浓度增至0.126 mol/L时,溶液中的H2CO3、HCO3-的直接还原占主导地位,故阴极过程随HCO3-浓度的上升而加速,对阳极过程,在HCO3-浓度低于0.042 mol/L下,主要为活化过程,而且其阳极溶解电流(密度)随HCO3-浓度的增加而下降;HCO3-浓度增至0.126 mol/L时,阳极过程出现明显的活化-钝化行为.高温高压腐蚀试验显示,材料的腐蚀速率随介质HCO3-浓度的增加而下降.SEM、EDS、XRD分析表明,在较低的HCO3-浓度下,腐蚀产物膜的主要成分为FeCO3晶体,HCO3-浓度较高时,则腐蚀产物主要为Ca、Mg的化合物,并形成Ca(Fe,Mg)(CO3)2复盐.在高pH值下,Ca2+、Mg2+比Fe2+更容易沉积.  相似文献   

17.
在流动的高浓度硫酸铜酸性溶液中, 研究了H2SO4浓度、 温度和CuSO4浓度对Cu/Cu2+沉积型电极在石墨基体上电化学性能的影响. 结果表明, 沉积型铜电极反应受控于阴极沉积过程, 室温下动力学过程较慢, 但铜沉积致密, 不易形成枝晶和海绵状铜. 适当提高H2SO4和CuSO4浓度及反应温度可降低铜沉积的极化, 改善其动力学特征; 但Cu离子的溶解度受限于H2SO4浓度, CuSO4浓度提升空间有限. 优化电解液组成为2.5 mol/L H2SO4+0.7 mol/L CuSO4, 反应温度45 ℃. 在此条件下, 铜在石墨基体上沉积/溶解的交换电流密度提高1个数量级, 具有良好的动力学特征, 单电极充放电电压差降低近50%, 能量效率超过80%.  相似文献   

18.
以纯钛为基体材料,并以热氧化的方式制备La-Ti/SnO_2-Sb/RuO_2-Co电极,采用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)及X-射线能量色散谱(EDS)对电极涂层表面形貌和晶体结构进行表征。采用制备的La-Ti/SnO_2-Sb/RuO_2-Co电极作为阳极,不锈钢为阴极,构建电化学反应器,对老龄垃圾渗滤液进行降解。结果表明在电流密度为65 mA/cm~2、Cl-浓度为4 500 mg/L、初始pH=9和反应时间为6 h的最佳反应条件下,La-Ti/SnO_2-Sb/RuO_2-Co电极对NH_3-N和COD的去除率分别达到86.5%、61%。  相似文献   

19.
电极液酸度及稀土浓度对硫酸体系电解还原提纯镱的影响   总被引:2,自引:1,他引:1  
研究了在硫酸体系中,采用钌铱钛合金网为阳极,金属汞为阴极,在无惰性气氛的保护下,尝试电解还原镱,在诸多电极条件实验中着重研究了阳极液酸度、阴极液酸度以及料液浓度变化时电流、目标离子的还原率等电解还原过程的变化。研究表明,当阳极液酸度为2.0 mol.L-1,阴极液pH=0.3,阴极液稀土料液浓度为0.5 mol.L-1时,镱的还原率可达95%以上,硫酸镱纯度达到99%以上,稀土总回收率高于99%。  相似文献   

20.
为了解HClO4、NH4ClO4和NaClO4电解液对炭载Pd(Pd/C)催化剂电极对甲酸氧化的电催化性能的影响,在用X射线衍射(XRD)谱、能量色散谱(EDS)和透射电子显微镜(TEM)对Pd/C催化剂进行表征的基础上,采用电化学方法测量了Pd/C催化剂在不同电解液中对甲酸氧化的电催化性能.发现在不同电解液中,Pd/C催化剂对甲酸氧化的电催化活性和稳定性按NH4ClO4NaClO4HClO4的次序降低.由于甲酸的存在,不同电解液的pH相差较小,因此,电解液的pH影响较小,而阳离子的影响较大.在NaClO4电解液中的性能优于在HClO4电解液中的性能是pH的影响.在NH4ClO4电解液中的性能优于在NaClO4电解液中是由于NH4+能降低CO在Pd/C催化剂电极上的吸附强度和吸附量,这一发现对提高直接甲酸燃料电池(DFAFC)的性能很有意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号