首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对化石能源依赖所造成的能源安全和环境污染等问题限制了人类社会的可持续发展。 Li-CO2电池能量密度高、原材料成本低廉且结构简单,因而被认为是开发和利用可再生清洁能源的有力技术,在住宅能量存储、电动汽车驱动和智能电网等领域具备良好的应用前景。此外, CO2等温室气体的大量排放是全球变暖的主要原因, Li-CO2电池放电时可将空气中的 CO2还原固定,生成的碳材料可用作燃料和化工原料,在资源利用化上提供了新途径。 Li-CO2电池是建立在锂-空气电池的基础上。相比大气中的其他成分, H2O与 CO2对该电池的影响很大。防水膜可以减少水的影响;而在放电过程中, CO2的存在会生成 Li2CO3, Li2CO3是可以分解的。由此可见, CO2在可充放的锂电池中作为正极活性成分储能,从而被利用起来。目前 Li-CO2电池至少面临三个问题:(1)电池充放电的机理尚不完全清楚,并且以 O2和 CO2混合气为活性气体的机理与以纯 CO2为活性气体的机理是有差别的, Li2CO3的生成与分解的机制仍在探索中;(2)电解液的稳定性;(3)寻找高效的正极催化剂材料。
  本文介绍了 Li-CO2电池的发展历程,讨论了 Li-CO2电池的充放电机理、电解液的影响以及正极催化材料的选取等。综述了活性气体为纯 CO2和 CO2-O2混合气时机理的差别,以及 CO2/O2混合比对电池性能的影响。选取电解液应考虑其粘度和介电性。高效能的正极催化材料大多具有高导电性、多孔结构和大的比表面积等特点。而温度也是影响 Li-CO2电池性能的因素之一。虽然 Li-CO2电池的概念相对较新,但可实现 CO2在能源储存与转化领域中的应用,并为 Li-O2电池向锂空气电池飞跃提供了重要参考。本文以如何提高正极材料的催化性能和 Li2CO3的生成和分解机理为重点,总结了正极材料所具有的导电性、比表面积、特殊结构等特点,以及相关机理。  相似文献   

2.
随着科技不断进步和人口快速增长,化石能源日渐枯竭,同时环境问题日趋严重,开发新型绿色、环保、高效的能源迫在眉睫.锂-空气电池以其质量轻、成本低、环境友好和能量密度高的优点引起人们广泛研究.但对于锂-空气电池仍然需要解决诸如较差的材料和电解液的稳定性、较低的循环寿命以及过高的充放电过电势等难题.而开发高效正极催化剂材料是解决这些问题的关键技术之一.其中,过渡金属氧化物以其地壳丰度高、成本低和性能优异等优点成为正极催化剂材料的研究热点.本文采用化学法成功合成了CoSnO_3纳米盒子,对其进行复合后制得CoSnO_3@rGO纳米复合材料,并系统研究了CoSnO_3及其纳米复合材料作为锂-空气电池正极催化剂的电化学性能.结果表明,通过石墨烯与CoSnO_3进行复合得到的CoSnO_3@rGO纳米复合材料的比表面积从原来的104.3 m~2 g~(-1)增加到195.8 m~2 g~(-1).作为阴极催化剂材料,CoSnO_3@rGO纳米复合材料的充放电过电位比CoSnO_3在100和500 mA g~(-1)充放电电流密度下分别降低了20和60 mV.在限制容量为1000 mAh g~(-1)、充放电电流密度为200 mA g~(-1)时,CoSnO_3@rGO纳米复合材料作为阴极催化剂材料可以使该锂-空气电池稳定循环130圈,比单纯的CoSnO_3纳米盒子作为阴极催化剂材料多循环了25圈.CoSnO_3@rGO纳米复合材料的优异性能归功于石墨烯良好的导电性能以及快速的电子和离子传输能力,同时由于其巨大的比表面积增大了电解液和催化剂材料活性位点的接触面积,为放电产物Li_2O_2的形成和分解提供了场所.CoSnO_3@rGO的OER催化活性和循环稳定性在CoSnO_3基础上均得到提升.  相似文献   

3.
利用X射线衍射分析(XRD)详细地研究了石墨/LiCoO2体系18650型锂离子电池充放电过程中正负极活性材料的晶体结构和微结构的变化.结果发现,在电池充电过程中,锂嵌入石墨层中,优先进入碳原子六方网格面间的间隙位置,导致石墨的点阵参数a和c,以及微应变ε增加和堆垛无序度P的变化,电池充电至20%后负极中形成Li-C化合物;电池充电时,正极LiCoO2中处于(000)位的Li原子优先脱离晶体点阵,随着正极材料脱锂量的增大,其晶格参数a减小,c增大,微应变ε也随之增加.LiCoO2在整个充电和放电过程中均未发生相变.最后,讨论了锂离子电池的导电机制.发现,充电时,锂离子的迁移从负极-电解液界面开始;放电时,其迁移从正极-电解液界面开始;在充放电过程中,正负极活性材料的嵌脱锂都有一个从活性材料颗粒表面到内层的过程.电池的充放电过程不完全可逆.  相似文献   

4.
提出在电解液中加入电荷转移中间体改善锂硫电池低温性能的思路,在电解液中添加芘作为电荷转移中间体,加速低温下聚苯胺锂硫电池电化学反应的平衡过程.循环伏安研究证明,芘在锂硫电池放电过程中的高压平台附近具有电化学活性,并通过X射线光电子能谱证实芘的引入能够使锂硫电池在低温下提高多硫化物平衡速率,延长第一平台,生成更多长链多硫化锂.对同样电极材料组成的聚苯胺/硫复合正极材料构成的锂硫电池,当在电解液中加入0.1 mol/L的芘时,相比于不含芘的锂硫电池,其第50次充放电循环下容量在0oC时能够提升22.8%,而在-15oC时能提升25.1%.  相似文献   

5.
随着全球经济快速发展对高效绿色能源需求的不断增长,锂-硫电池因具有较高的能量密度,成为了下一代高能量密度二次电池研发的重点.然而,锂-硫电池面临的循环寿命短、库仑效率低、安全性能差、较高自放电等问题,使其目前还很难实现商品化.锂-硫电池存在的这些问题主要与正极活性硫材料的高绝缘性、放电过程中产生的多硫化物溶解于电解液、硫正极在充放电过程中的体积膨胀与收缩、以及锂负极支晶化等有关.通过从锂-硫电池硫复合正极、电解液、黏结剂和负极等4个方面综述了高比能锂-硫电池的最新研究进展,其中重点介绍了硫正极复合材料的进展情况.  相似文献   

6.
应用电池挤压试验机研究了锂离子电池内部短路失效过程,并由DSC、GC/MS和XRD分析了电池内部的正极、负极和电解液之间在不同温度下的反应机理.实验表明,正极Li0.5CoO2与电解液的反应是导致电池内部短路失效的根本原因.电池因内部短路发热,一旦温度达到正极Li0.5CoO2的分解温度时,正极瞬时分解,并释放出O2.后者与电解液瞬间发生剧烈反应,同时放出大量CO2气体,冲破电池壳体,造成电池发生爆炸.其中SEI膜自身的分解反应以及负极与电解液在初期的反应都为正极与电解液反应起了积累热量的作用.  相似文献   

7.
锂空气电池的能量密度是传统锂离子电池的5~10倍, 可与汽油相媲美。近几年来, 锂空气电池因此受到了人们的广泛关注。本文概述了锂空气电池正极材料和电解液的最新研究进展。从商业碳、具有特定形态的碳材料、催化剂、导电聚合物几个方面阐述了正极材料;从物质结构的角度, 简要介绍了锂空气电池中常用的酯类、醚类、砜类、胺类和离子液体等电解液。最后指出了目前锂空气电池存在的问题, 并对其进行了展望。  相似文献   

8.
锂空气电池的能量密度是传统锂离子电池的5~10倍,可与汽油相媲美。近几年来,锂空气电池因此受到了人们的广泛关注。本文概述了锂空气电池正极材料和电解液的最新研究进展。从商业碳、具有特定形态的碳材料、催化剂、导电聚合物等几个方面阐述了正极材料;从物质结构的角度,简要介绍了锂空气电池中常用的酯类、醚类、砜类、胺类和离子液体等电解液。最后指出了目前锂空气电池存在的问题,并对其进行了展望。  相似文献   

9.
温波  朱卓  李福军 《电化学》2023,(2):7-19
非质子锂-氧气电池具有高理论能量密度,在过去几年里受到了广泛关注。然而,动力学缓慢的氧还原反应(ORR)/氧析出反应(OER)和放电产物Li2O2导电性差导致锂-氧气电池过电位大,放电容量有限,循环寿命短。开发有效的锂-氧气电池正极催化剂可以调控放电与充电过程中Li2O2的形成和可逆分解,减小放电/充电极化。尽管提升ORR/OER动力学的正极催化剂已经取得了一系列重要进展,但是对正极在放电和充电中Li2O2生成和分解过程的理解依然是不足的。这篇综述聚焦于锂-氧气电池正极催化剂的最新进展,总结了催化剂与Li2O2生成/分解的作用关系,本文首先指出了锂-氧气电池正极面临的科学问题,包括动力学缓慢的ORR/OER过程和导电性差的反应产物Li2O2钝化电极,并提出了锂-氧气电池正极设计准则。通过对最近报道的正极催化剂进行分类讨论,明晰调控催化剂活性位点策略,理解在正极反应过程中...  相似文献   

10.
李娜  徐丹  鲍迪  马金玲  张新波 《催化学报》2016,(7):1172-1179
随着全球环保意识的加强,开发具有环保可持续且高能量密度的能源逐渐成为人们关注的焦点.近年来,金属-空气电池凭借其高的能量密度作为能源存储器件已经引起了人们的广泛关注.最重要的是,此类电池的反应物为空气中的氧气,并不需要辅助设备对其储存,使得无论在质量和体积方面均优于其他二次电池.尤其锂空气电池凭借其高的理论比容量11140 Wh/kg,比现有锂离子电池高出1–2个数量级,且有质量轻便等优势,成为近几年的研究热点.然而,考虑到金属锂资源的短缺和金属钠与其具有相似的物理化学性质,因此呼吁用金属钠取代金属锂,钠-空气电池作为未来的储能器件引起了广大研究者的兴趣.但是,钠空气电池目前的实际应用仍存在很多问题:充放电过程中产生过高的过电位,循环寿命低,电解液不稳定,粘结剂的不稳定性,空气正极的结构以及外界操作环境条件等.解决这些问题的一种重要途径就是寻找合适的催化剂和设计合理的电极结构.催化剂的加入既可以增强其氧还原(ORR)及氧析出(OER)活性又可以通过调控电极的结构,为氧气、电子和离子的运输提供更多的通道,从而加速 ORR和 OER进程.基于粘结剂的不稳定性,需设计一体化的正极材料.由于碳纤维布作为柔性集流体具有高的机械强度和电化学稳定性好的优点,因此本文使用水热处理和热处理两步法在碳纤维布上原位生长 Co3O4纳米线(Co3O4 NWs),制备柔性、无粘结剂的一体化正极材料(COCT)用于钠空气电池.本实验以硝酸钴为主盐,尿素为矿化剂,氟化铵为络合剂,通过120°C热处理5 h在碳纤维布上生长 Co3O4 NWs的前驱体,然后经过400°C热处理2 h得到一体化柔性电极材料并用于钠空气电池,该材料表现出优异的电化学性能:充放电过程产生较低的过电位;高的放电比容量4687 mAh/g,碳纤维布作为正极放电容量是1113.7 mAh/g;能稳定循环62圈(碳纤维布作为正极循环16圈).这些优异的性能可归功于 Co3O4 NWs高的催化性能和多孔性效应:(1)由于 Co3O4 NWs紧密地附着在碳纤维布表面,形成了快速的电子传导通道,因而具有优异的电子传导性;(2) Co3O4 NWs之间的空隙以及多孔结构增加了反应的活性面积和活性位点,这种结构有利于氧气和离子的运输以及电解液的扩散,从而加速 ORR和 OER进程;(3) COCT电极结构能为放电产物和反应物提供更多的存储位置,从而提高了放电容量和倍率性能.结果证实,钠空气电池的放电产物是过氧化钠和超氧化钠的混合物.加入催化剂后,放电产物的形貌发生了变化:当碳纤维布作为正极材料时,放电产物的形貌是片状的; COCT电极作为正极材料时,放电产物沿着 Co3O4 NWs生长.这种柔性一体化正极材料的应用,为柔性钠空气电池器件的发展起到了巨大的推动作用.  相似文献   

11.
发展纯电动汽车与混合动力汽车是解决能源危机与环境问题的有效途径,这对新能源材料及储能设备提出了更高的要求. 其中以金属锂作为负极、以空气中的氧气作为正极活性物质组成的锂-空气二次电池具有很高的理论比能量,因在纯电动汽车、混合动力汽车方面有很好的应用前景而受到人们的广泛关注. 根据工作环境及介质条件,目前研究最多的锂-空气电池主要包括有机电解液、有机-水组合电解液及全固态电解质三种类型. 由于锂-空气电池的发展历史较短,目前仍处于起步阶段,在电池的正极、负极、电解液(质)及综合性能等方面均存在诸多的困难与挑战. 本文从作者课题组对有机电解液及组合电解液型锂-空气电池方面的研究出发,旨在向读者简单介绍锂-空气电池的发展历史,研究现状及未来努力的方向.  相似文献   

12.
2,2'-双氨基苯氧基二硫化物及其聚合物的合成研究   总被引:2,自引:0,他引:2  
在不同的锂或锂离子二次电池正极材料中 ,新型的聚有机二硫化物有可能成为最有应用前景的电池正极材料之一 [1] ,Visco等 [2 ]首次提出利用二硫化物中双硫键的断裂与再接 (即电聚合与电解聚 )化学性能应用于锂二次电池的充放电 .目前 ,对有代表性的有机二硫化物 2 ,5 -二巯基 -1 ,3 ,4-噻二唑(DMc T)进行了大量的研究[3~ 5] ,最近又提出通过合成新的聚有机二硫化物来提高其电化学性能[6 ,7] .为了得到一种新型高电化学活性和高导电性的锂或锂离子二次电池正极材料 ,本文通过化学方法合成2 ,2 -双氨基苯氧基二硫化物 (DAPD)单体 ,并通…  相似文献   

13.
锂氧气电池因其具有接近汽油的比能量密度而备受人们的关注。随着研究的深入,研究人员发现锂氧气电池的实用化面临着诸多挑战,如高的过电位、循环性能不佳、能量效率难以保持较高水平等。这一系列问题直接与负极的腐蚀、电解液的分解、正极材料的结构和ORR/OER催化剂催化活性有着非常紧密的联系。本文着重对近三年非水系锂氧气电池正极材料的研究进行综述,将锂氧气电池正极材料的研究分为碳基复合材料和无碳基复合材料进行概括,阐述了不同类别的催化剂和正极材料微观结构对锂氧气电池的充放电性能、循环稳定性、循环效率等性能的影响,并对后续的研究工作做一定的展望。  相似文献   

14.
黄路露  孙凯玲  刘明瑞  李静  廖世军 《化学进展》2019,31(10):1406-1416
锂空气电池因其极高的理论能量密度和环境友好等优点,有望成为下一代车用动力电源体系。然而,目前锂空气电池尚存在许多的问题和挑战,就正极而言,空气电极活性低的问题已成为制约锂空气电池技术发展最为重要的问题,因此,开发高性能锂空气电池正极催化剂一直以来都是该领域的重要研究课题。碳基催化剂(正极材料)是目前最具吸引力的锂空气电池正极材料之一,近年来得到了广泛的关注和研究。本文总结和介绍了近年来国内外在多孔碳基材料、石墨烯基材料、掺杂碳材料等碳材料作为锂空气电池正极材料方面的进展,包括本课题组在非水系锂空气电池正极材料方面的研究工作,并对碳基正极材料的发展及其在锂空气电池中的应用前景做了展望。  相似文献   

15.
黄祺  邢震宇 《化学进展》2022,34(11):2517-2539
锂硒电池因其高能量密度、高体积比容量和适中的输出电压等优点而成为备受关注的二次电池。然而,由于穿梭效应、较差的导电性、低活性物质利用率以及较快的容量衰减等问题,锂硒电池的实际应用受到了极大的阻碍。近些年,研究人员深入研究了锂硒电池的充放电机理,同时也探索了各种碳材料、金属化合物等新材料作为正极载体、中间层和电解液添加剂对于电化学性能的影响。本文系统地总结了锂硒电池的电极材料、中间层和添加剂等的研究进展,并且重点介绍了在充放电机理和系统优化方面的进步,以期为锂硒电池的进一步发展提供新的思路。  相似文献   

16.
锂浆料电池由于其成本低、寿命长、容量和输出功率可独立设计等优点,在大规模储能领域具有广阔的应用前景.电极浆料作为锂浆料电池的重要组分,其导电性与流变性对电池电化学性能具有重要影响.本文以锂离子电池常用的磷酸铁锂为正极活性物质,探究了不同导电剂种类及添加量对正极浆料导电性和流变性的影响.通过对比不同正极浆料的悬浮稳定性、粘度以及导电性,确定出1.0 wt.%科琴黑添加量的浆料性能较为突出.基于该正极浆料的锂浆料流动电池能够稳定循环450 h.本工作将为锂浆料电池导电剂的选择提供指导.  相似文献   

17.
锂离子电池用富锂层状正极材料   总被引:1,自引:0,他引:1  
吴承仁  赵长春  王兆翔  陈立泉 《化学进展》2011,23(10):2038-2044
正极材料与负极材料是锂离子电池重要组成部分。目前锂离子电池负极材料比容量通常在300mAh/g以上,而正极材料比容量始终徘徊在150mAh/g。正极材料正在成为锂离子电池性能进一步提升的瓶颈。富锂层状正极材料是一类新型正极材料,其可逆容量在200mAh/g以上,其高容量特性引起人们的广泛关注。这类材料可以用xLi2MO3·(1-x)LiM'O2 (M 为Mn, Ti, Zr之一或任意组合; M'为Mn, Ni, Co之一或任意组合; 0≤x≤1)形式表示。由于其组成与结构的特殊性,这类富锂层状正极材料的充放电机理也不同于其它含锂过渡金属氧化物正极材料。本文介绍富锂层状正极材料的合成、结构与充放电机理,重点介绍近年来通过改性提高其电化学性能方面的研究进展,指出目前富锂材料研究中存在的问题,探讨未来的研究重点。  相似文献   

18.
锂离子电池过充特性的研究   总被引:4,自引:0,他引:4  
庞静  卢世刚  刘莎 《电化学》2005,11(4):398-401
以尖晶石锰酸锂作锂离子电池正极材料,研究其过充电特性及影响因素.结果表明,电池1C过充特性和正极活性物质的量有关,与负极活性物质的量无关.充电倍率是影响电池过充特性的关键因素,低倍率过充时,结束电池过充的主要原因是内部电解液分解殆尽;高倍率过充时,因电池内部产生的热量增加,散热相对滞后,导致电池内部温度升高隔膜熔断从而截断回路结束过充.  相似文献   

19.
锂离子电池容量衰减机理的研究进展   总被引:11,自引:0,他引:11  
容量衰减是阻碍尖晶石锂锰氧化物商品化的主要障碍,正极活性材料的溶解、电解液的分解、钝化膜的形成等现象会引起充放电过程中不必要的副反应,这将导致电池容量的损失及衰减.本文总结了以尖晶石Li-Mn-O为阴极材料的电池的各种衰减现象的机理,并对各种机理做了比较和评价.提出了减少容量衰减的几种方法,并对尖晶石Li-Mn-O的发展作出展望.  相似文献   

20.
锂硫电池因具有远高于传统锂离子电池的理论比容量和质量能量密度,而受到人们的广泛关注,近年来一直是高能锂金属电池领域的研究热点之一. 然而这一体系的一些固有特性问题依然没有得到解决,无法实现稳定理论容量输出,严重阻碍了锂硫电池的实际应用. 其中,比较突出的问题是电池充放电过程中生成可溶性中间产物-多硫化物-对硫基正极、锂基负极和电解液等电池关键组成部分具有深刻的影响. 本综述从多硫化物的热力学和动力学等性质入手,详细介绍了锂硫电池中关键材料的功能化设计和优化策略,并对未来的发展做出展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号