首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米Au催化剂被认为是具有商业价值的用于醇选择氧化的第二代催化剂.这是因为Au氧化还原电势高,化学稳定性好,可抑制易使Pt族元素中毒的胺等的毒化;其次,对于一些特定选择氧化和还原反应而言,具有较优的反应选择性.目前较多的研究集中在调变Au纳米颗粒与氧化物载体的相互作用,获得协同效应.例如,利用CeO2纳米晶为载体,沉积Au纳米颗粒(约3 nm),使CeO2部分还原为非计量比的催化材料,活化氧并获得高选择氧化性能.碳是相对惰性的载体,与Au相互作用力弱,因此可被用于研究Au纳米颗粒本征催化性能.但负载碳金催化剂在焙烧甚至还原过程中易团聚,且在反应中易流失,可能导致活性下降.利用胶体沉积法可获得介孔碳担载纳米Au催化剂,对葡萄糖选择氧化具有很高的催化活性和选择性.但是,制备中使用的保护剂残留经常被忽略.由于立体效应或电子结构调变作用,保护剂可能影响Au催化剂活性或稳定性.我们前期建立了反应单体参与的自组装技术合成功能化介孔碳路线,一步在介孔碳骨架中掺杂氧化物纳米催化剂.本文从介孔催化材料的结构出发,设计“镶嵌”在碳骨架中的纳米Au颗粒.采用配位作用辅助表面活性剂自组装技术,以苯酚和甲醛为碳前体,引入含巯基硅烷偶联剂,通过配位作用稳定金离子,获得尺寸可控介孔碳限域纳米Au催化剂.低温炭化中,由于巯基-金的配位作用阻抑金属移动或团聚,高温下聚合物炭化为相对刚性的碳骨架.此时,Au纳米颗粒被相邻介孔孔墙限制.硅烷偶联剂可除去,不影响碳载体,并可产生丰富二级孔道,获得多级孔道介孔碳材料.X射线衍射和透射电镜结果显示,所合成的催化剂中Au颗粒的尺寸可控,为3-18nm,且具有单分散性,均匀地分散在整个介孔碳骨架中,其含量为1.1-9.0 wt%.金碳催化剂具有有序的二维六方介孔结构.能量散射谱(EDX)也证明了催化剂只含有C,O和Au元素,没有S和Si元素的残留.X射线光电子能谱(XPS)结果显示催化剂表面的Au含量远远低于ICP的测试结果,也证明了Au纳米颗粒分布在介孔碳骨架内,同时只含有C,O和Au元素也与EDX相符.X射线近边吸收谱结果表明,随着颗粒尺寸的减小,Au表面电子性质发生改变.N2吸脱附等温线显示,有序介孔碳金催化剂具有典型的第Ⅳ型曲线,说明孔径分布范围较窄,主孔道尺寸为3.4-5.7 nm.值得注意的是,低压力段吸附量显示明显突跃,暗示其具有一套约为2 nm的次级介孔.所有的催化剂都具有高的比表面积(1269-1743 m2/g)和大的孔体积(0.79-1.38 cm3/g).Au纳米颗粒具有高的热稳定性,在惰性气氛中,即使在600℃也未见明显聚集长大.进一步讨论了合成中影响金纳米颗粒尺寸的重要影响因素.(1)巯基含量:通过调节巯基组分的含量,可以调控催化剂中Au纳米颗粒的尺寸(9-18 nm).需要强调的是,Au纳米颗粒尺寸与巯基在新合成材料中的浓度有关,当巯基含量在所研究的范围中时(1.55-3.06 mmol/g),Au纳米颗粒尺寸仅仅与巯基浓度有关,而与Au浓度无关.(2)硫酸预炭化处理:新合成的材料经过一步硫酸预炭化处理,可以得到尺寸为3 nm的有序介孔碳金催化剂.表征结果证明,经过硫酸预碳化处理,大量表面活性剂被除去,同时聚合物载体发生部分碳化,有助于在后续高温炭化中保护3 nm金颗粒不团聚.尺寸可控、高热稳定性、无配体保护的有序介孔碳负载Au催化剂有望应用在催化和传感器等领域.  相似文献   

2.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPa H2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO2,Pt/TiO2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

3.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m~2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPaH_2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO_2,Pt/TiO_2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO_2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO_2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

4.
高热稳定性纳米Au/TiO2催化剂的制备与表征   总被引:3,自引:0,他引:3  
吕倩  孟明  查宇清 《催化学报》2006,27(12):1111-1116
 采用三嵌段共聚物聚乙醚-聚丙醚-聚乙醚EO20PO70EO20 (P123)为有机模板剂合成了介孔TiO2载体,用沉积-沉淀法制得Au/TiO2催化剂. 运用N2 吸附-脱附、 X射线衍射、 X射线光电子能谱和高分辨电镜技术对催化剂的结构与形貌进行了表征. 采用P123模板剂合成的TiO2具有较均匀的介孔结构,孔径集中在6.1 nm附近,负载金后,其介孔结构保持良好,但孔径下降至5.4 nm. 400 ℃焙烧后,介孔TiO2负载的Au催化剂中Au主要以金属态存在. 负载在三种TiO2载体(介孔TiO2、溶胶-凝胶法合成的TiO2和工业TiO2)上的Au晶粒大小和分散度差异较大,其中介孔TiO2载体更有利于金的分散,以该载体制备的催化剂400 ℃焙烧后金的晶粒尺寸在1~5 nm范围内,催化剂显示了很好的CO氧化活性和抗热稳定性,即使在420 ℃焙烧,其室温下CO的转化率也在90%以上. 而溶胶-凝胶法制备的TiO2和工业TiO2负载的纳米金催化剂中,金晶粒尺寸约为10 nm,催化剂的CO氧化活性和抗热稳定性较差.  相似文献   

5.
金纳米颗粒在烯烃加氢、水气转化、过氧化氢直接合成和醇类选择性氧化等反应中表现出独特的催化性能,引起了人们广泛关注.通常,金纳米颗粒的催化活性受到尺寸、原子堆积形式、暴露晶面及其与载体的相互作用所影响.而金纳米颗粒的烧结往往导致其催化效率迅速下降.为了解决金颗粒烧结问题,提高其使用寿命,必须控制高温处理时颗粒和原子的迁移.尽管已有很多工作见诸报道,然而到目前为止,仍未完全解决金颗粒烧结问题.本文通过调整有机模板剂和反应温度成功地合成了不同窗口尺寸的立方介孔氧化硅材料(FDU-12),并将预先合成的3nm金颗粒负载于其上,考察了窗口尺寸对金颗粒烧结的影响.首先,采用小角X射线散射、氮气吸附-脱附、透射电镜和扫描电镜等手段证实成功合成了具有亚5 nm窗口的FDU-12材料,同时以3 nm金颗粒为探针,进一步区分了具有3 nm和3–5nm窗口的FDU-12样品.在抗烧结实验中发现,具有3–5 nm窗口尺寸的FDU-12能够在一个较宽的金负载量(1.0–8.3 wt%)下稳定金纳米颗粒.在550 ℃空气中焙烧5 h后,金颗粒的平均尺寸维持在4.5–5.0 nm.更小的窗口尺寸则会导致3 nm金颗粒无法进入FDU-12孔道,从而带来低的负载能力和差的抗烧结性能.另一方面,具有7 nm窗口尺寸的FDU-12则只在高的金颗粒负载量(9 wt%)下才表现出较好的抗烧结性能,低负载量时烧结严重(2.1 wt%,14.2±5.5 nm).我们推测,合适的窗口尺寸(3–5 nm)恰好能允许3 nm金颗粒进入FDU-12的孔道,在高温处理过程中,当金颗粒长大到5nm左右时,窗口极大地限制了金颗粒的移动,导致其不能在孔与孔之间自由迁移.此外,该FDU-12材料的孔径为18 nm,这使得封装在各个孔内部的金颗粒与其他金颗粒距离较远,不利于其通过原子迁移而发生烧结.因此,拥有3–5 nm窗口尺寸的FDU-12在一个宽的金负载量下表现出良好的抗烧结能力.而对于具有7 nm窗口尺寸的FDU-12,在高的金负载量下,它可通过自聚焦效应抑制原子迁移,从而具有优良的抗烧结性能.但在低负载量时,介孔氧化硅的绝大部分孔内并不包含多个金颗粒,自聚焦效应无法发挥作用,在高温焙烧时金颗粒可以通过大的窗口尺寸相互融合导致烧结.我们将具有不同金尺寸的Au NP/FDU-12催化剂用于环己醇选择性氧化反应中.结果表明,4.5 nm的金催化剂表现出最好的活性(1544 mmol g_(Au)~(-1)h~(-1))和大于99%的选择性(230 ℃),大大超过了先前报道的基于Ag和Mn为活性中心的催化剂.另外,与负载在商用γ-Al_2O_3上相比,Au NP/FDU-12体系表现出了很好的选择性,直接脱水产物小于1%.同时可以保持100 h内金颗粒不发生烧结,活性不明显下降.  相似文献   

6.
李丽  季伟捷  区泽棠 《化学进展》2009,21(9):1742-1749
金(Au)的催化作用已成为催化领域的前沿研究课题。本文综述了近年来采用不同方法制备介孔二氧化硅(MCM-41, MCM-48, SBA-15)负载的纳米Au催化剂以及在CO低温氧化、环己烯加氢和环己烷氧化等反应中的催化作用。讨论了影响纳米Au催化剂活性的相关因素, 包括载体的种类、表面性质、Au纳米颗粒的尺寸、分散度以及稳定性等。最后对各种制备纳米Au的方法进行了总结。  相似文献   

7.
采用自下而上方法制备了金-介孔二氧化硅复合纳米管,其中金纳米粒子作为催化剂嵌在介孔二氧化硅纳米管管壁内侧.金纳米颗粒的团聚、脱落和晶粒尺寸生长都可以被有效限制,而且催化剂负载量和尺寸大小均可实现简单控制.管壁中的介孔孔道、纳米管末端开口以及一维中空管道可以协同促进反应物扩散,从而提高4-硝基苯酚还原反应活性.循环实验证明这种复合纳米管催化剂具有良好的可重复使用性,而且在反应过程中未出现金纳米粒子脱落或团聚现象.  相似文献   

8.
采用原位限域生长策略制备了一系列有序介孔碳负载的超小MoO_3纳米颗粒复合物(OMC-US-MoO3).其中,有序介孔碳被用作基质来原位限域MoO_3纳米晶的生长.依此方法制备的MoO_3纳米晶具有超小的晶粒尺寸(5 nm),并在介孔碳骨架内具有良好的分散度.制得的OMC-US-MoO_3复合物具有可调的比表面积(428~796m~2/g)、孔容(0.27~0.62 cm~3/g)、MoO_3质量分数(4%~27%)和孔径(4.6~5.7 nm).当MoO_3纳米晶的质量分数为7%时,所得样品OMC-US-MoO_3-7具有最大的孔径、最小的孔壁厚度和最规整的介观结构.该样品作为催化剂时,表现出优异的环辛烯选择性氧化性能.  相似文献   

9.
介孔Al2O3负载纳米Au催化剂用于低温催化氧化CO   总被引:2,自引:0,他引:2  
 用不同模板剂合成了具有较高比表面积和较多表面碱性位的介孔Al2O3载体,并采用均相沉积-沉淀法制备了Al2O3负载纳米Au催化剂,对制备的介孔Al2O3载体及相应催化剂采用低温N2吸附法、TEM和XPS等手段进行了表征,考察了载体表面碱性对纳米Au粒子在载体表面的沉积及相应催化剂在CO氧化反应中催化性能的影响. 以CO2-TPD法测定载体表面碱性,结果表明,介孔氧化铝的表面碱性与其合成过程中所用的模板剂有关. 以表面碱性位较丰富的介孔Al2O3为载体制备的催化剂表面Au粒子分布较均匀且粒径(3.1~3.2 nm)较小,在CO完全氧化反应中催化活性最高,表明载体表面的碱性位有利于稳定其表面沉积的纳米Au粒子. XPS分析结果表明,催化剂表面的Au主要以Au0金属态形式存在,它在CO氧化反应中表现出较高的催化活性.  相似文献   

10.
In This Issue     
正封面:面向能源、环境、绿色化工等领域的广泛需求,近年来多种新型多孔材料问世,其中介孔材料、杂化多孔固体如金属有机骨架结构等具有有序孔道结构的催化材料得到蓬勃发展,本期"新型多孔催化材料"专栏,封面选载了3篇报道,分别为可高效催化甲醇电催化氧化且抗CO中毒的介孔碳负载PtRu等合金催化剂、低温氧化甲醛的三维有序介孔MnO_2材料、具有优异硝基苯催化加氢活性的MIL-101负载NiPd核壳纳米催化剂.  相似文献   

11.
吴丽琼  郝利花  李鑫恒 《应用化学》2016,33(11):1340-1342
利用废弃蟹壳做模板制备的具有均一孔道结构的介孔碳材料做载体,在孔道内限域原位合成四氧化三铁氧化物纳米颗粒。 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)表征了材料的结构和性能。 结果表明,孔道结构呈整体式结构,孔直径在40~50 nm,长50~200 μm。 纳米颗粒为四氧化三铁,粒径在10 nm左右,尺寸单分散性好,可均匀分散在介孔孔道内。 该方法工艺路线简单,绿色环保。  相似文献   

12.
自上世纪八十年代在多相催化研究领域兴起纳米金催化淘金热以来,负载型纳米金催化剂的优越性和局限性都得到了广泛的研究.负载型纳米金催化剂活性强烈依赖于其晶粒尺寸和载体性质,一般认为,金纳米颗粒只有在一定的尺寸范围(2-5 nm)且负载在"活性"载体表面才能发挥出其优异的催化活性.然而,小尺寸纳米金颗粒热稳定性差的弱点阻碍了其工业化应用的进程.因此,如何实现小尺寸金纳米颗粒的高温稳定以及构筑金与"活性"载体间有效的接触界面是发挥纳米金优异催化性能的关键.我们曾利用MgGa_2O_4尖晶石载体与金纳米颗粒形成金属-氧化物"异质孪晶"结构,从而实现了将~3 nm的金颗粒稳定在块体金的熔点(1064°C)以上,为小尺寸纳米金的高温稳定提供了新的思路.但MgGa_2O_4尖晶石是一种非氧化还原性载体,对水分子或氧气分子的辅助活化作用较弱,因而限制了具有优异高温抗烧结性能的Au?MgGa_2O_4催化剂在水汽变换和催化燃烧反应中的应用.本文采用等体积浸渍法在高温800°C焙烧5 h后的Au?MgGa_2O_4-800℃-5h样品上进行CeO_2助剂的修饰,以提高其对水分子和氧气分子的活化能力.利用STEM, XRD和EDS-Mapping表征对CeO_2/[Au?MgGa_2O_4-800°C-5h]样品进行结构分析,发现该样品中纳米Au具有优异的高温抗烧结性能, 800°C焙烧5 h并经CeO_2修饰后其颗粒尺寸仍保持在3.1 nm左右,样品中CeO_2的晶粒尺寸约为6 nm,且Au纳米颗粒与CeO_2助剂间形成了有效的接触界面.利用H_2-TPR和XPS表征对该样品的氧化还原性能及电子性质进行分析,发现CeO_2/[Au?MgGa_2O_4-800°C-5h]样品中CeO_2的还原温度相比于CeO_2/MgGa_2O_4对比样品显著降低, XPS结果显示CeO_2添加后Au的化学价态由金属态变为氧化态,表明Au与CeO_2助剂间具有显著的电子转移.同时, CeO_2的添加显著提高了800°C老化后Au?MgGa_2O_4催化水汽变换(CO转化率由~1.5%升到~34.0%, 450°C)、甲烷燃烧(T50降低80°C)和CO氧化(T50降低100°C)等反应活性.为理解CeO_2对Au?MgGa_2O_4的催化性能促进机制,我们选取水汽变换反应为例,利用DRIFTs表征发现CeO_2促进了反应物H_2O的活化,并结合小尺寸Au对CO的活化能力,从而使水汽变换反应顺利进行.本文在MgGa_2O_4尖晶石稳定纳米金的基础上,利用具有优异氧传输性能的CeO_2作为助剂,提高了该催化剂对水分子和氧气分子的活化能力,从而获得了对水汽变换反应和催化燃烧反应具有高稳定性和高活性的CeO_2/[Au?MgGa_2O_4]催化剂.这种"先稳定-后活化"的催化剂设计思路也为今后高稳定性、高催化活性的纳米金催化剂的设计和制备提供了借鉴.  相似文献   

13.
采用一锅法制备了介孔Co-Al2O3催化剂,并首次用于甲烷部分氧化制合成气反应. 结果表明,与普通浸渍法相比,一锅法制备的Co-Al2O3催化剂表现出更为优异的催化性能. 合成的介孔Co-Al2O3催化剂具有大的比表面积和孔体积,以及规整有序的六方介孔孔道,Co物种高度分散,从而导致还原后高的金属分散度,而介孔孔道对金属纳米颗粒的约束作用可有效增强金属的抗烧结能力.  相似文献   

14.
金纳米颗粒在烯烃加氢、水气转化、过氧化氢直接合成和醇类选择性氧化等反应中表现出独特的催化性能,引起了人们广泛关注.通常,金纳米颗粒的催化活性受到尺寸、原子堆积形式、暴露晶面及其与载体的相互作用所影响.而金纳米颗粒的烧结往往导致其催化效率迅速下降.为了解决金颗粒烧结问题,提高其使用寿命,必须控制高温处理时颗粒和原子的迁移.尽管已有很多工作见诸报道,然而到目前为止,仍未完全解决金颗粒烧结问题.本文通过调整有机模板剂和反应温度成功地合成了不同窗口尺寸的立方介孔氧化硅材料(FDU-12),并将预先合成的3 nm金颗粒负载于其上,考察了窗口尺寸对金颗粒烧结的影响.首先,采用小角X射线散射、氮气吸附-脱附、透射电镜和扫描电镜等手段证实成功合成了具有亚5 nm窗口的FDU-12材料,同时以3 nm金颗粒为探针,进一步区分了具有<3 nm和3?5 nm窗口的FDU-12样品.在抗烧结实验中发现,具有3?5 nm窗口尺寸的FDU-12能够在一个较宽的金负载量(1.0?8.3 wt%)下稳定金纳米颗粒.在550oC空气中焙烧5 h后,金颗粒的平均尺寸维持在4.5?5.0 nm.更小的窗口尺寸则会导致3 nm金颗粒无法进入FDU-12孔道,从而带来低的负载能力和差的抗烧结性能.另一方面,具有>7 nm窗口尺寸的FDU-12则只在高的金颗粒负载量(>9 wt%)下才表现出较好的抗烧结性能,低负载量时烧结严重(2.1 wt%,14.2?5.5 nm).我们推测,合适的窗口尺寸(3?5 nm)恰好能允许3 nm金颗粒进入FDU-12的孔道,在高温处理过程中,当金颗粒长大到5 nm左右时,窗口极大地限制了金颗粒的移动,导致其不能在孔与孔之间自由迁移.此外,该FDU-12材料的孔径为18 nm,这使得封装在各个孔内部的金颗粒与其他金颗粒距离较远,不利于其通过原子迁移而发生烧结.因此,拥有3?5 nm窗口尺寸的FDU-12在一个宽的金负载量下表现出良好的抗烧结能力.而对于具有>7 nm窗口尺寸的FDU-12,在高的金负载量下,它可通过自聚焦效应抑制原子迁移,从而具有优良的抗烧结性能.但在低负载量时,介孔氧化硅的绝大部分孔内并不包含多个金颗粒,自聚焦效应无法发挥作用,在高温焙烧时金颗粒可以通过大的窗口尺寸相互融合导致烧结.我们将具有不同金尺寸的AuNP/FDU-12催化剂用于环己醇选择性氧化反应中.结果表明,4.5 nm的金催化剂表现出最好的活性(1544 mmol gAu-1 h-1)和大于99%的选择性(230oC),大大超过了先前报道的基于Ag和Mn为活性中心的催化剂.另外,与负载在商用γ-Al2O3上相比,AuNP/FDU-12体系表现出了很好的选择性,直接脱水产物小于1%.同时可以保持100 h内金颗粒不发生烧结,活性不明显下降.  相似文献   

15.
一步合成了桥键嵌入二硫醚官能化介孔硅基材料(PMO-SBA-15),利朋介孔硅基材料孔道内表面的二硫醚基团捕获纳米金(Au)粒子的作用,获得了负载型纳米Au催化剂(Au-PMO-SBA-15).小角X射线衍射和低温N2吸附-脱附的结果表明,PMO-SBA-15和Au-PMO-SBA-15均保持典型的介孔结构;高分辨透射电镜观察到纳米Au粒子在载体孔道内分散均匀,甲均粒径为(2.2±0.2)nm.以70%的叔丁基过氧化氧水溶液为氧化剂,考察了纳米Au催化剂Au-PMO-SBA-15在苯甲醇氧化反应中的催化性能.结果表明,当反应温度为353 K、反应时间为5 h时,苯甲醇的转化率为29.1%,苯甲醛的选择性为100%,且催化剂重复使用7次其催化活性和苯甲醛选择性基奉不变.  相似文献   

16.
采用自下而上方法制备了金-介孔二氧化硅复合纳米管,其中金纳米粒子作为催化剂嵌在介孔二氧化硅纳米管管壁内侧。金纳米颗粒的团聚、脱落和晶粒尺寸生长都可以被有效限制,而且催化剂负载量和尺寸大小均可实现简单控制。管壁中的介孔孔道、纳米管末端开口以及一维中空管道可以协同促进反应物扩散,从而提高4-硝基苯酚还原反应活性。循环实验证明这种复合纳米管催化剂具有良好的可重复使用性,而且在反应过程中未出现金纳米粒子脱落或团聚现象。  相似文献   

17.
本文利用介孔碳的软模板合成方法和阳极氧化铝膜的孔道限域性制备有序的介孔碳纳米纤维。然后以介孔碳纳米纤维作载体,采用温和的非共价方法和乙二醇还原法负载铂纳米粒子来制备铂催化剂。实验结果表明,温和的功能化方法有利于载体介孔结构的保持和铂纳米粒子的分散,并且还原反应条件对铂纳米粒子的负载具有重要影响。最后通过循环伏安法研究了铂催化剂的电化学性质,结果表明这些铂催化剂具有良好的甲醇电催化活性和稳定性。  相似文献   

18.
多级孔ZSM-5负载的钴催化剂的费-托合成催化性能   总被引:1,自引:0,他引:1  
采用水蒸气辅助转晶(SAC)法合成了粒径均一(180 nm)的纳米ZSM-5颗粒,颗粒间堆积形成大量的开放介孔,与ZSM-5的微孔共同形成多级孔结构。以该材料为载体采用满孔浸渍法制备了负载量为15%(质量分数)的钴催化剂。采用XRD、SEM、TEM、N_2物理吸附-脱附等表征技术对多级孔ZSM-5载体及其负载催化剂的形貌和结构进行了表征,并对催化剂的费-托合成催化性能进行了测试。结果表明,相比于大颗粒的ZSM-5和商业ZSM-5,多级孔ZSM-5负载的钴催化剂的费-托合成活性最高,CH_4选择性最低,C_(5-20)产物的选择性高达68.9%,这归因于多级孔ZSM-5的介孔孔道有效地促进反应过程中产物的传质扩散以及ZSM-5微孔骨架上的酸中心促进了长链烃产物的二次加氢裂解。  相似文献   

19.
韦岳长  吴强强  熊靖  刘坚  赵震 《催化学报》2018,39(4):606-612
柴油机排放颗粒物(主要成分是炭烟)是城市大气PM2.5中一次颗粒物的主要来源和二次颗粒物形成的重要组分,严重危害大气环境和人类健康.利用颗粒物捕集器与催化剂相结合的连续过滤再生技术是满足柴油车国VI炭烟颗粒物排放标准的最有效技术,目前该技术所面临的挑战是研发在排气温度的柴油炭烟颗粒物催化氧化催化剂.柴油炭烟催化燃烧反应的本质是典型的气(氧气)-固(炭烟颗粒)-固(催化剂)三相深度氧化反应,因此我们研究组提出了高活性柴油炭烟燃烧催化剂设计应该遵循优化固-固接触与强化活化分子氧能力二者相结合的研究思路.为满足此设计思路的要求,本课题组前期采用孔径大于200 nm的三维有序大孔(3DOM)结构氧化物作为载体,利用大孔效应来实现PM在催化剂内部的有效扩散,从而提高催化剂与PM的接触效率.采用具有强活化分子氧能力的负载型贵金属(Au,Pt)纳米颗粒或贵金属-氧化物复合纳米颗粒作为活性位来提高催化剂对分子氧的活化能力,进而设计了多个系列高活性催化剂,并形成了担载贵金属纳米颗粒的可控制备方法与装置.然而,Au和Pt昂贵的价格限制了其广泛应用.价格相对便宜的Pd具有与Pt相似的催化性能,是其良好替代品.但是,目前关于3DOM氧化物表面负载型Pd纳米颗粒结构和尺寸与柴油炭烟催化燃烧性能之间的相关研究仍然较少.基于此,本文采用气泡辅助膜还原法制备了3DOM二氧化钛(TiO_2)担载超细Pd纳米颗粒催化剂.利用XRD,Raman,BET,SEM,TEM,ICP,XPS和H2-TPR等技术手段对催化剂进行表征,并以模拟柴油炭烟为研究对象,利用程序升温氧化反应(TPO)对催化剂的活性进行评价,深入探讨了催化剂的制备、结构及物化性质与炭烟催化燃烧反应性能之间的关系.XRD和Raman结果表明,TiO_2载体由锐钛矿(主)和金红石(次)两种物相组成.SEM照片显示,所制催化剂为规整的有序大孔结构,球形孔互相贯通,孔径均一,大孔腔平均尺寸为280 nm,孔窗尺寸为109 nm,这种三维有序大孔TiO_2的结构能够增强炭烟颗粒与催化剂之间的接触效率.TEM表征显示,平均粒径为1.1 nm的超细半球型Pd纳米颗粒高度分散于TiO_2载体的内壁上,两者间的优化界面面积有利于增加活化O2的活性位密度,这些活性位源于Pd与TiO_2间强相互作用.H2-TPR和XPS表征印证了上述观点,具有1.1 nm超细Pd颗粒的Pd/3DOM-TiO_2催化剂表现出强的低温氧化还原特性和丰富的表面吸附氧物种.在TPO测试中,相对于担载5.0 nm Pd颗粒的催化剂,具有1.1 nm尺寸超细Pd颗粒的Pd/3DOM-TiO_2催化剂展示了高的催化炭烟燃烧活性,T10,T50和T90分别为295,370和415 oC,且在5次TPO测试过程中表现出良好的催化和结构稳定性.这种具有3DOM结构和超细Pd纳米颗粒的纳米催化剂能够有效降低Pd的使用量,在催化炭烟燃烧的实际应用中大有潜力.  相似文献   

20.
杨新丽  乔丽明  戴维林 《催化学报》2015,(11):1875-1885
磷钨酸具有酸性,而且具有氧化还原性,是一种多功能的新型催化剂,具有很高的催化活性,稳定性好,既可作均相催化剂,也可做多相催化剂.磷钨酸作为多相催化剂主要负载于无机氧化物、介孔分子筛、活性炭和离子交换树脂等材料中,然而这些多相催化剂存在着结构不明确,磷钨酸分散不均、易流失、活性点易中毒等问题.为了克服以上问题,需要寻找更加合适的载体来制备新颖的负载型的磷钨酸多相催化剂,金属-有机骨架的独特性质,使该材料成为一种优良的催化剂载体.金属-有机骨架(MOFs)又称配位聚合物,是指由金属离子与有机配体通过配位键和其他一些弱作用力连接而成的具有超分子微孔网络结构的一种颇具应用前途的类沸石材料.这种材料具有丰富的孔结构和很大的比表面积,同时具有孔结构规整、孔径大小设计可调、表面化学基团修饰可调等优点,使得它在吸附分离、多相催化、环境保护等领域具有很好的应用前景. HKUST-1(Cu-BTC或MOF-199)是该领域内研究和应用较多的一种金属-有机骨架材料,它最早由香港大学Williams教授课题组报道,其为面心立方晶体.在结构中,每个Cu2簇与四个均苯三甲酸相连,每个均苯三甲酸桥连着三个Cu2簇,形成轮浆式次级结构单元.这些次级结构单元相互交错连接形成3D网络结构,具有孔径约为0.9 nm ×0.9 nm的正方形孔道,孔道中的客体分子可以除去,并可以为其它的客体分子所置换. HKUST-1本身即是一种优良的催化剂,同时也可作为一种性能稳定的催化剂载体.目前,关于HKUST-1在催化领域中的应用主要限制在微孔范围,其较小的孔道不利于物质扩散和传输,从而限制其实际应用.本论文利用超分子模板法,以十六烷基三甲基溴化铵(CTAB)为模板剂、铜为金属中心、均苯三甲酸为有机配体、磷钨酸(HPWs)为活性组分,采用一步水热法合成微-介孔多级孔道金属-有机骨架固载磷钨酸催化剂HPWs@Meso-HKUST-1,详细研究了该催化剂对环戊烯选择氧化制备戊二醛的催化性能,并采用X射线粉末衍射(XRD)、傅里叶红外光谱(FT-IR)、N2吸附、透射电镜(TEM)和室温CO原位吸附红外(CO-FT-IR)等表征手段对HPWs@Meso-HKUST-1催化剂进行了结构表征,从而解释该催化剂对目标反应具有优良催化性能的本质原因. N2吸附表征结果说明, HPWs@Meso-HKUST-1催化剂的吸附-脱附曲线在低相对压力范围内呈现I型吸附等温线,在高相对压力范围内呈现具有H2型滞后环的IV型吸附等温线;催化剂独特的吸附等温线表明以CTAB为模板剂,采用一步水热合成法可以得到具有微孔和介孔多级孔道的催化剂材料.催化剂的比表面积和孔容随着磷钨酸含量的增加而减少,结合文献报道,可以得出一步水热合成法使活性组分HPWs分布在载体的介孔孔道内. XRD和FT-IR测试结果表明,一步水热合成法可以成功的将HPWs引入HKUST-1中,且HPWs高度分散在载体中; HPWs@Meso-HKUST-1催化剂保持了载体HKUST-1的骨架结构.小角XRD和TEM结果说明,催化剂的多级孔结构为无序蠕虫状介孔组织.室温CO-FT-IR说明,在HPWs@Meso-HKUST-1催化剂中, HPWs提供了不同于载体HKUST-1的L酸酸性位.从以上结果可以得出,一步水热合成法使HPWs包裹在载体的介孔孔道内,防止了HPWs的流失,使HPWs@Meso-HKUST-1催化剂为环戊烯选择氧化制备戊二醛提供了大量的、高度分散的、具有L酸酸性位的活性中心,且催化剂的介孔孔道有利于反应物和产物的扩散,从而使该催化剂表现出优良的催化性能;在优化条件下,环戊烯的转化率达到92.5%,戊二醛的得率达到78.9%;热过滤实验表明该催化剂是真正的多相催化剂,且至少可以重复使用3次.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号