共查询到20条相似文献,搜索用时 15 毫秒
1.
Zn助剂对铁基催化剂费托合成制低碳烯烃性能的影响 总被引:3,自引:0,他引:3
低碳烯烃(C2=–C4=)是十分重要的基础化工原料,目前主要采用热裂解或催化裂解石脑油、蜡油等工艺路线生产。近年来,针对全球范围的石油危机及我国富煤贫油这一基本的国情,以煤、天然气(页岩气)和生物质等丰厚的碳资源,经合成气制取低碳烯烃的工艺路线备受关注。其中,合成气经由甲醇或二甲醚间接制取烯烃技术(MTO/MTP)已经工业化;与之相比,费托合成直接生产低碳烯烃(FTO)工艺流程短、投资和操作费用低,具有良好的工业发展前景。目前,费托合成催化剂活性组分的研究主要集中于Fe, Co, Ni和Ru等元素,其中Fe基催化剂具有较高低碳烯烃选择性、较低甲烷选择性和制造廉价等优势,更适合于FTO反应。最近,人们大多聚焦于对负载型铁基催化剂的研究,但传统非负载型铁催化剂由于其制备简单、价格低廉,仍然具有巨大的开发前景。近来,我们组报道了采用微波水热法制备的Zr助剂改性Fe-Zr催化剂应用于CO加氢研究,提高了催化剂的活性,与传统Mn改性铁基催化剂相比, CO2选择性明显降低。目前,已有研究小组对Zn助剂提高铁基催化剂烯烃选择性进行报道,但反应过程中的严重积碳问题却少有研究。我们在Fe-Zr催化剂的基础上,进一步研究了Zn助剂在提高铁基催化剂低碳烯烃选择性、改善产物分布和降低反应过程积碳方面的作用。
我们分别采用微波水热法和浸渍法对铁基催化剂进行了Zn改性,并将其用于费托合成制取低碳烯烃反应。运用扫描电镜(SEM)、X射线衍射(XRD)、N2物理吸附(BET)、H2程序升温还原(H2-TPR)和X射线光电子能谱(XPS)技术手段对催化剂的物理和化学性质进行了表征。结果表明,两种方法改性后的铁基催化剂具有高低碳烯烃选择性和稳定性,重质烃(C5+)含量降低,且保持低CO2选择性。此外,采用两种方法Zn改性的铁基催化剂展现出了不同的特性。 XRD结果表明,反应前两种方法制备的样品α-Fe2O3物相晶粒大小均为15–18 nm,反应后浸渍法制备的样品对应物相(ZnFe2O4)晶粒大小约为25 nm、而微波水热法制备的样品约为20 nm,说明微波水热法改性的催化剂有效分散了Fe活性组分; H2-TPR结果显示,两种Zn助剂加入方法对催化剂Fe组分的还原行为有不同程度影响,体现了活性组分间不同的相互作用; XPS结果表明, Zn助剂改变了催化剂Fe活性位的化学性质,在微波水热法制得催化剂的表面Zn含量更低、分散度更高,而Zn助剂的加入对Zr组分没有明显影响。所有催化剂经200 h在线活性测试后,采用传统浸渍法制备的催化剂表面有大量积碳生成;而采用微波水热改性铁基催化剂积碳量明显减少,表现出更高的催化活性与稳定性。 相似文献
我们分别采用微波水热法和浸渍法对铁基催化剂进行了Zn改性,并将其用于费托合成制取低碳烯烃反应。运用扫描电镜(SEM)、X射线衍射(XRD)、N2物理吸附(BET)、H2程序升温还原(H2-TPR)和X射线光电子能谱(XPS)技术手段对催化剂的物理和化学性质进行了表征。结果表明,两种方法改性后的铁基催化剂具有高低碳烯烃选择性和稳定性,重质烃(C5+)含量降低,且保持低CO2选择性。此外,采用两种方法Zn改性的铁基催化剂展现出了不同的特性。 XRD结果表明,反应前两种方法制备的样品α-Fe2O3物相晶粒大小均为15–18 nm,反应后浸渍法制备的样品对应物相(ZnFe2O4)晶粒大小约为25 nm、而微波水热法制备的样品约为20 nm,说明微波水热法改性的催化剂有效分散了Fe活性组分; H2-TPR结果显示,两种Zn助剂加入方法对催化剂Fe组分的还原行为有不同程度影响,体现了活性组分间不同的相互作用; XPS结果表明, Zn助剂改变了催化剂Fe活性位的化学性质,在微波水热法制得催化剂的表面Zn含量更低、分散度更高,而Zn助剂的加入对Zr组分没有明显影响。所有催化剂经200 h在线活性测试后,采用传统浸渍法制备的催化剂表面有大量积碳生成;而采用微波水热改性铁基催化剂积碳量明显减少,表现出更高的催化活性与稳定性。 相似文献
2.
本研究考察了不同载体(CeO2、ZrO2、MnO2、SiO2和活性炭)对负载型Ru基费托合成制烯烃(FTO)催化剂结构和催化性能的影响。结果表明,载体的本征属性和金属-载体相互作用(MSI)对催化性能有很大影响。在同一反应条件下的催化活性关系为:Ru/SiO2> Ru/ZrO2> Ru/MnO2> Ru/AC> Ru/CeO2。对于烯烃选择性,Ru/SiO2和Ru/MnO2得到的总烯烃选择性最高,超过70%,而Ru/ZrO2催化剂的烯烃选择性低至29.9%。由于金属Ru与SiO2的金属载体相互作用较弱,反应后的Ru/SiO2催化剂得到适中的Ru纳米颗粒尺寸(~5 nm)且反应活性也最高。对于Ru/AC和Ru/MnO2,其Ru纳米颗粒尺寸仅为1-3 nm,表现出... 相似文献
3.
4.
Zn、Mn助剂对CuFe合成低碳醇催化剂的影响 总被引:1,自引:0,他引:1
研究了锌、锰助剂对CuFe合成低碳醇催化剂结构及性能的影响. 低温N2吸附、X射线衍射(XRD)和H2-程序升温还原(H2-TPR)结果表明, 锌的添加导致催化剂比表面下降, 不利于活性相的分散; 而锰则促进铜铁的分散, 增加了铜铁的接触面积, 有利于二者之间的相互作用. CO吸附的漫反射红外光谱(DRIFT)表明, 锌增强了铁对CO的吸附能力, 这种效应与ZnFe2O4的形成有直接关系; 而锰助剂由于稀释效应, 减弱了铁对CO吸附能力和链增长能力. 催化剂的反应性能测试表明, 与CuFe催化剂相比, CuZnFe催化剂的活性大幅度提高, 但C2+醇选择性下降; CuFeMn催化剂的活性却有所下降, C2+醇选择性也降低, 但总醇的选择性提高. 双助剂修饰的催化剂表现出明显的协同效应, 改变了催化剂的织构, 降低了Cu的还原温度, 修饰了Fe的还原性能. 更重要的是, Zn和Mn的添加显著增强了CO在催化剂表面的吸附量. 催化剂催化性能总体上优于CuZnFe和CuFeMn催化剂. 相似文献
5.
采用连续共沉淀与喷雾干燥成型技术相结合的方法制备了系列微球状Fe/Mn/K催化剂,结合H2 DTG、CO TPR、Mossbauer谱等表征手段,研究了Mn助剂的加入方式对铁基催化剂物相结构、还原和碳化行为以及F-T合成性能的影响。催化剂在浆态床反应器中以接近F-T合成实际工况条件 (250℃、1.5MPa、H2/CO=0.67和2.0L /(gcat·h)) 进行评价。结果表明,以共沉淀方式加入Mn助剂具有较强的Fe Mn相互作用,从而抑制了催化剂的还原和碳化,降低了催化剂的活性,提高了催化剂的稳定性。而以部分共沉淀和黏结剂方式加入Mn助剂促进了催化剂的还原和碳化,提高了反应活性加速了催化剂的失活。与共沉淀Mn相比,部分共沉淀和黏结剂Mn提高了重质烃和烯烃的选择性,同时抑制了有机含氧化合物的生成。 相似文献
6.
7.
Cr 助剂对 Fe 基催化剂结构和费托合成性能的影响 总被引:1,自引:0,他引:1
采用 N2 吸附-脱附、X 射线衍射、穆斯堡尔谱、X 射线光电子能谱、程序升温还原和热重分析等技术研究了助剂 Cr 含量对 Fe 基费托合成催化剂的织构性质、还原行为以及物相变化的影响. 在 H2/CO = 2.0, 260~300 oC, 1.5 MPa 和 2 000 ml/(g•h) 条件下, 在固定床反应器中考察了 Cr 含量对 Fe 基催化剂费托合成反应活性和产物烃选择性的影响. 结果表明, 在氧化态催化剂中, Cr 助剂与 Fe 物相存在较强的相互作用, 形成固溶体相 α-(Cr1-xFex)2O3; 随着 Cr 含量的增加, 逐渐由单一的富 Fe 相 α-(Fe1-xCrx)2O3 向富 Fe 相和富 Cr 相 α-(Cr1-yFey)2O3 两相过渡. Fe-Cr 固溶体的生成显著抑制了催化剂的还原, 导致催化剂还原度降低, 因而催化剂活性下降. 同时, Cr 的添加提高了甲烷和轻质烃选择性, 但抑制了水煤气变换活性. 相似文献
8.
考察了 Ru 助剂 (0.17%?9.96%) 对 Co/SiO2 催化剂结构及其费托合成反应性能的影响. 结果表明, Ru 助剂可降低 Co/SiO2 催化剂的还原温度, 从而提高其还原度. 光电子能谱和扩展 X 吸收射线精细结构研究表明, 即使 Ru 含量高达 9.96%, 在 Co/SiO2 催化剂焙烧过程中也未观察到 Ru 物种与 Co 物种作用形成的化合物. 还原后催化剂中 Ru 趋向于与 Co 物种紧密接触且分散在催化剂表面. H2 程序升温脱附结果表明, 随着 Ru 含量的增加, 位于反应温度附近的 H2 脱附峰面积增加, 即此时催化剂吸附 H2 能力提高, 因此反应活性单调增加, 但存在最佳 Ru 含量, 此时 C5+选择性最高. 相似文献
9.
10.
铈助剂对Co/SiO2催化剂费托合成反应性能的影响 总被引:4,自引:0,他引:4
考察了铈助剂对钴基催化剂上费托合成反应性能的影响,并进行了TPR和XRD等表征及瞬变应答研究.结果表明,加入铈助剂后,催化剂的活性和C5+烃类的选择性有显著提高,且C5+烃类分布有明显改变,有利于中间馏分油的生成.CODEX软件优化表明,当n(Ce)/n(Co)=0.2~0.3,w(Co)=10%,焙烧温度为740K时,在GHSV=500h-1,p=1.2MPa,T=483K的反应条件下,C5+烃类收率可达83%左右.根据实验结果,可以推测在钴基催化剂表面存在弱、中、强三种化学吸附的CO物种;-CH2-基团可能通过强度适中的化学吸附CO直接加氢生成;强化学吸附的CO是指离解吸附的CO,可发生歧化反应生成CO2和积炭,并覆盖部分活性位;加入铈助剂能抑制强化学吸附的CO生成,从而显著地提高了催化剂的活性. 相似文献
11.
《催化学报》2015,(9)
由于石油资源的逐步枯竭,近年来费托(F-T)反应因其可以高效将煤、天然气和生物质等转化成液体燃料和高值化学品而越来越受到人们的关注.相比于Co,Ni和Ru等F-T催化剂,Fe基催化剂因其价格低廉,产物分布广而被广泛研究.以合成气直接制备低碳烯烃的F-T过程为例,铁基催化剂通常会因积碳和烧结的问题,而导致失活.因此,人们通常使用一些氧化物载体,比如氧化硅,氧化铝或者分子筛来分散并稳定铁粒子.但是这类氧化物载体通常与铁有非常强的相互作用,特别是在铁粒子较小的情况下,容易生成一些难于还原的硅酸铁和铝酸铁.而活性炭、碳纤维等惰性载体与铁的相互作用较弱,不足以稳定小的铁粒子在而反应过程中聚集.近来,我们组提出了利用石墨烯碳层封装过渡金属粒子作为催化剂,利用穿透的金属电子来催化反应,从而可以使活性中心和反应介质隔离,有效地增强了非贵金属催化剂的活性和稳定性.在此基础上,我们组和其他课题组的研究表明,一系列石墨烯碳层封装的非贵金属催化剂在燃料电池阴极氧还原反应,电催化析氢反应,染料敏化太阳能电池中的I–3还原反应以及催化氧化还原反应中都有着广泛的应用前景.这种材料中碳层不仅能在氧化气氛、酸性介质中保护包覆的金属,防止其被氧化或者腐蚀,还与包覆的金属有着较强的相互作用,可以促进非贵金属的电子向碳层表面的转移,有望在一些苛刻的反应条件下实现对贵金属催化剂的替代.本文进一步拓展了其在高温反应中的应用,发现豆荚状碳纳米管封装的金属铁纳米粒子在合成气制备低碳烯烃中可以有效防止金属铁纳米粒子的烧结和聚集,因此表现出优异的低碳烯烃选择性和催化稳定性.我们利用一步化学反应法合成了豆荚状碳纳米管封装的铁纳米粒子催化剂(Pod-Fe),并通过酸洗除去碳管外面裸露的铁粒子.透射电镜(TEM)和X射线衍射(XRD)表明酸洗后铁粒子被包覆在碳管内,并且呈金属态,而酸洗前,则还有大量的氧化铁粒子分布于碳管外部(Fe Ox/Pod-Fe).将酸洗前后的两个催化剂用于固定床气相F-T反应中.通过调节空速和温度考察了它们的催化反应性能,结果表明两个催化剂在不同的反应条件下都有着良好的低碳烯烃选择性.不同反应温度下,它们表现出不同的变化趋势:Pod-Fe活性随着温度的升高而缓慢增长,至380 oC都没有明显的失活现象;而对于Fe Ox/Pod-Fe催化剂,随着温度的升高,CO的转化率先升高,在300 oC时达最高,但随着温度进一步升高,活性迅速降低,呈现一个火山型曲线.TEM结果发现,反应后Fe Ox/Pod-Fe催化剂粒子上产生了很多杂乱的碳丝,并且铁粒子有着明显的聚集长大.而Pod–Fe催化剂即使在380 oC反应后,其形貌仍然保持完好,没有积碳产生,粒子也没有发生聚集和长大.进一步在320 oC下120 h的寿命试验发现,Pod-Fe催化剂的初始活性较低,但经20 h的活化阶段,活性会先增加后略有下降,20 h后趋于稳定.而Fe Ox/Pod-Fe催化剂在反应初始虽然表现出较高的活性,但是随着时间进行,活性迅速下降一半以上,最后趋于稳定.同时结合反应后TEM和XRD的结果发现碳管外部裸露的铁粒子会在反应过程中形成碳化铁物种,并随着反应进行产生聚集,并伴有大量积碳,导致活性迅速下降;而碳层的包覆对于铁粒子有着很好的稳定作用,使得铁粒子能够在高温反应中保持稳定,并且没有积碳的产生.由此可见石墨烯碳层可以有效保护其包覆的金属粒子,并且能够提高其在高温反应下的低碳烯烃选择性和稳定性.此类催化剂有望在一些苛刻条件下的多相催化反应中得到广泛应用. 相似文献
12.
通过共沉淀法或聚乙烯醇(PVA)辅助共沉淀法分别制备了Fe2O3和FeCu催化剂,结合BET、XRD、SEM、H2-TPR等表征手段,研究了Cu助剂对PVA辅助的沉淀铁催化剂的织构性质、物相结构、形貌特征、还原行为以及F-T合成反应性能的影响。结果表明,Cu助剂的加入增大了铁基催化剂中α-Fe2O3的晶粒,减小了催化剂的BET比表面积和孔容,增大了孔径;改变了铁基催化剂的形貌;促进了铁基催化剂在H2中的还原。反应过程中,在催化剂中只添加Cu助剂时,有利于提高催化剂的反应活性,而当同时加入Cu助剂和PVA时,由于Cu助剂与PVA较强的相互作用,反而降低了催化剂的反应活性,且催化剂的选择性向轻质烃方向偏移。 相似文献
13.
14.
由合成气经费托合成(FTS)直接制取液态燃油如汽油(C_5-C_(11))或柴油(C_(10)-C_(20)),对缓解全球能源危机具有重要意义.但是,费托合成产物大多服从Anderson-Schulz-Flory(ASF)分布,C_5-C_(11)烃类选择性最大为45%.因此,高选择性地合成C_5-C_(11)烃仍具有挑战性.铁基催化剂价格低廉且能够在较宽温度区间内保持高活性,其中χ-Fe_5C_2纳米粒子催化剂表现出高活性及高C_5-C_(11)选择性.理论计算表明,Fe_5C_2中高米勒指数晶面如(510)晶面更易暴露,且C-C偶联反应更易发生在该晶面上.但纯相Fe_5C_2的制备流程复杂,操作条件苛刻,成本较高.此外,在反应过程中,因高温、高压及氧化性产物(如H_2O或CO_2等)的影响,Fe_5C_2易发生相转变,导致多物相共存.因此,制备在反应过程中能够保持高Fe_5C_2含量的催化剂意义重大.石墨化炭材料如石墨烯、碳纳米管等,因其具有大π电子结构和高电子密度,作为载体能够促进铁粒子的还原;氮掺杂石墨化炭能够进一步改善电子结构,增强载体与铁物种间的电子传导,进而促进氧化铁粒子的还原及后续碳化形成Fe_5C_2.大量研究表明,包覆结构具有独特的限域效应,能够促进碳化铁物相的生成和稳定存在.结合氮掺杂石墨化炭的电子效应和包覆结构的限域效应,有望得到高含量Fe_5C_2催化剂,实现高C_5-C_(11)选择性.因此,本文通过谷氨酸与Fe物种的配位作用,合成Fe高度分散的配合物,并热解得到氮掺杂石墨化炭包覆铁基催化剂(FeC-x,x为热解温度(℃)),通过改变热解温度调变炭层结构,并考察了其对催化剂费托性能的影响.在不同热解温度下制备的催化剂的费托合成反应结果表明,FeC-800催化活性高达239.4μmolCO gFe~(-1) s~(-1),分别是FeC-700的2倍和FeC-900的20倍.而且,FeC-800的C_5-C_(11)烃类选择性为49%,高于大多数报道的Fe/C催化剂.FeC-900则表现出较低的C_5-C_(11)烃类选择性.TG表征发现,热解温度升高,炭层石墨化过程中有损失,导致实际铁负载量增高.XRD和Raman结果表明,炭层石墨化程度随热解温度升高而增加.N_2吸附-脱附等温线表明催化剂存在介孔,有利于反应物及产物的扩散.TEM观察到铁纳米粒子被包覆在石墨化炭结构中.XPS测试结果显示,催化剂表面可探测到的元素为C,O,N和Fe.其中表面Fe的含量远低于实际负载量,说明铁纳米粒子大多存在于包覆炭层之内.通过对比反应60 h前后样品的TEM结果发现,催化剂铁纳米粒子尺寸无明显增加,说明炭层对铁纳米粒子具有限域作用.炭层的包覆可能对产物选择性造成影响:一方面,炭层能够抑制烯烃的扩散,促进二次反应,从而促进长链烃的生成;另一方面,炭层的空间效应也会抑制更长链烃(如C_(12+))的生成.因此,FeC-800表现出高C_5-C_(11)选择性.通过N 1s谱图可以发现,石墨化氮、吡啶氮及吡咯氮是主要的表面氮物种,说明N被成功掺杂进石墨化炭结构中.且随热解温度增加,石墨化氮含量增加.通过H_2-TPR及还原后XRD结果发现,FeC-700与FeC-800具有较低的还原温度,易被H_2还原为单质Fe,这有利于在反应过程中转变为活性相Fe_5C_2.CO-TPD结果显示,CO吸附强度随样品热解温度升高而显著增加.热解温度的提高促进了炭层的石墨化度,强化了炭层与Fe之间的电子转移,进而增强了Fe与CO间的相互作用,促进了H_2还原后生成的单质Fe碳化为Fe_5C_2,并且Fe_5C_2在反应过程中不易被氧化.高含量的Fe_5C_2和适宜的CO吸附强度使FeC-800催化剂表现出高催化活性及高C_5-C_(11)选择性. 相似文献
15.
以FeCuK/SiO2为母体催化剂,用不同浓度的NH4HSO4水溶液进行等体积浸渍,制备了不同SO2-4含量的费托合成(FTS)铁基催化剂.采用原子发射光谱、低温N2吸附、 X射线光电子能谱、程序升温还原和穆斯堡尔谱等技术对催化剂进行了表征,并在H2/CO摩尔比0.67,WHSV=2 000 h-1,压力1.5 MPa和温度250 ℃条件下进行了浆态床FTS反应.结果表明,少量SO2-4能促进催化剂在H2中的还原;在合成气还原过程中,少量SO2-4对催化剂的碳化程度影响不大,但大量SO2-4严重抑制催化剂的碳化.在约500 h的运行实验中,各催化剂样品表现出的催化活性有所差异,但均呈现较好的稳定性.SO2-4可抑制水煤气变换反应活性,且随着SO2-4含量的增加,抑制作用愈加明显;同时,催化剂上浸渍少量SO2-4可有效抑制CH4的生成,提高低碳烯烃的选择性. 相似文献
16.
采用典型方法制备了不同Fe、Mn、K比例的铁基催化剂,利用X射线粉末衍射、N2吸附/脱附、扫描电镜、拉曼光谱、H2-TPR等手段对催化剂进行了表征,并考察了催化剂对CO加氢制低碳烯烃反应的催化性能。结果表明,Mn能有效促进活性相分散,抑制碳链增长,但Fe-Mn强相互作用不能有效增加低碳烃烯/烷比,α-Fe2O3作为活性铁物种前驱体对烯烃生成反应更加有利。K通过减少Mn以氧化物形式出现,增加FeMn化合物晶格缺陷,从而最终使Fe-Mn-K催化剂低碳烯烃收率显著高于Fe-Mn和Fe-K体系。 相似文献
17.
18.
以FeCuK/SiO2为母体催化剂,用不同浓度的NH4HSO4水溶液进行等体积浸渍,制备了不同SO42-含量的费托合成(FTS)铁基催化剂.采用原子发射光谱、低温N2吸附、X射线光电子能谱、程序升温还原和穆斯堡尔谱等技术对催化剂进行了表征,并在H2/CO摩尔比0.67,WHSV=2 000 h-1,压力1.5 MPa和温度250℃条件下进行了浆态床FTS反应.结果表明,少量SO42-能促进催化剂在H2中的还原;在合成气还原过程中,少量SO42-对催化剂的碳化程度影响不大,但大量SO42-严重抑制催化剂的碳化.在约500 h的运行实验中,各催化剂样品表现出的催化活性有所差异,但均呈现较好的稳定性.SO42-可抑制水煤气变换反应活性,且随着SO42-含量的增加,抑制作用愈加明显;同时,催化剂上浸渍少量SO42-可有效抑制CH4的生成,提高低碳烯烃的选择性. 相似文献
19.
采用化学还原法在纯水中制备了纳米铁基催化剂, 将其直接分散到液态聚乙二醇 (PEG) 中进行费托合成 (FTS) 反应. 透射电子显微镜、X 射线衍射、穆斯堡尔谱和 X 射线光电子能谱等结果表明, 还原态催化剂粒径在 30~65 nm, 主要由无定形的 Fe-B 和α-Fe 组成, 其中 B 部分电子向 Fe 转移. 反应过程中, 无定形的 Fe-B 首先快速转变为 α-Fe, 而 α-Fe 很容易发生碳化或氧化, 最终转变为 Fe3O4 和碳化铁. PEG 能有效抑制纳米粒子的聚集长大, 反应后催化剂粒径减小为 20~55 nm. 在 3.0 MPa, V( H2)/V(CO) = 2 和 200 oC 的反应条件下, 该催化剂表现出优异的 FTS 低温活性和较高的稳定性, 反应后产物和催化体系很容易实现分离. 相似文献