首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在许多催化应用中双金属的PdAu催化剂性能优于单金属催化剂.科研人员对具有可控纳米结构和高活性的PdAu催化剂进行了广泛的研究,但该催化剂的制备需要多步且通常步骤复杂.本文仅通过浸渍和焙烧制得了Au掺杂的负载型Pd催化剂,所得PdAu/C催化剂用于室温水相三氯乙烯加氢脱氯反应.当Pd和Au负载量分别为1.0 wt%和1.1 wt%时,在经过干燥、空气处理和H2还原的过程后,所制得的PdAu/C催化剂活性最高,初始转化频率(TOF)为34.0×10–2 molTCEmolPd–1 s–1,是单金属1.0 wt%Pd/C催化剂TOF (2.2×10–2 molTCEmolPd–1 s–1)的15倍以上. X射线吸收光谱结果表明,金的加入避免了400oC焙烧时Pd的氧化.本文还提出了可能的催化剂纳米结构演变路径,以解释所观察到的催化现象.  相似文献   

2.
钯基纳米材料是甲酸电氧化反应的优良催化剂.本工作制备了两个系列钯基催化剂,并考察了聚苯胺对钯上甲酸电氧化反应的助催化作用.一种是以聚苯胺为基底,在其表面电沉积钯纳米粒子,制得n PANI/Pd催化剂(n表示聚合苯胺的循环数);另一种是直接在商业Pd/C催化剂表面电聚合苯胺,制得Pd/C/n PANI催化剂.结果显示,聚苯胺单独存在时对甲酸电氧化反应没有催化活性,但其可对钯上甲酸电氧化反应呈现明显的促进作用,且促进作用与聚苯胺的厚度(聚合循环数)密切相关.在两个系列催化剂中,15PANI/Pd和Pd/C/20PANI显示出最高的催化性能.15PANI/Pd中钯的质量比催化活性是纯钯催化剂的7.5倍;Pd/C/20PANI中钯的质量比催化活性和本征催化活性分别是商业Pd/C催化剂的2.3和3.3倍.钯催化性能的提升与聚苯胺和钯纳米粒子间的电子效应有关.  相似文献   

3.
合成了一种2,2'-联吡啶功能化的微孔有机聚合MOP-bipy,与Pd(CH3CN)2Cl2络合后得到一种复合材料Pd/MOP-bipy.用碳固体核磁(13C CP/MAS NMR)、傅里叶变换红外光谱(FT-IR)、粉末X射线衍射(PXRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氮气吸附(nitrogen adsorption)和热重分析(TG)对材料进行表征.用电感耦合高频等离子光谱(ICP)和X射线光电子能谱(XPS)确定了Pd/MOP-bipy材料中Pd的含量和价态.该复合材料在水相催化Suzuki-Miyaura反应和甲醇与水的混合溶剂中催化Sonogashira偶联反应中表现出卓越的催化活性.Pd/MOP-bipy催化剂表现出至少五次循环的重复利用性.  相似文献   

4.
研究了钯碳催化剂对芳基卤和取代芳基卤与丙烯酸和苯乙烯的Heck芳基化反应的催化性能.结果表明:在反应温度为80℃、反应时间为8h、四丁基溴化铵(TBABr)作为溶剂和三丁胺作为碱的条件下,钯碳催化剂对不同取代芳基卤与丙烯酸和苯乙烯的Heck芳基化反应具有良好的催化性能,产物收率在80%以上.  相似文献   

5.
负载型金催化剂在CO氧化反应中具有良好的低温活性,受到了研究者的广泛关注,其催化性能与载体的性质密切相关.氧化铝具有廉价易得、比表面积大和热稳定性好等优点.然而,作为一种非还原性载体,氧化铝提供活性氧物种的能力差,与还原性载体相比催化剂的CO氧化活性较低.理论计算和实验结果表明,在金催化剂中引入过渡金属镍能够有效促进氧分子在催化剂表面的吸附和活化,从而提升金催化剂活性.此外,过渡金属的存在能够提高金的分散度,增加活性位数目,防止在高温预处理过程中金颗粒的烧结,从而提高催化剂的活性和稳定性.基于上述考虑,本文在氧化铝纳米片合成过程中原位引入硝酸镍,以实现对氧化铝载体的改性,然后负载金并应用于CO氧化反应.结果表明,当载体中的Ni/Al摩尔比为0.05,金负载量为1wt%时,采用还原性气氛对催化剂进行预处理可以得到具有CO氧化性能优良的金催化剂, 20 oC下CO转化率即可达100%.预处理气氛能够显著影响催化活性,采用还原性气氛预处理后催化剂活性明显优于氧化性气氛预处理.采用X射线衍射(XRD)、高分辨透射电镜(HRTEM)、氢气程序升温还原(H2-TPR)、氧气程序升温脱附(O2-TPD)、CO吸附原位红外光谱(CO-DRIFT)和X射线光电子能谱(XPS)等表征手段进一步研究了镍掺杂对Au/Al2O3催化剂上CO氧化反应的促进作用机制.XRD测试未观察到明显的金或镍衍射峰,表明金或镍物种均为高分散.HRTEM结果进一步证实,引入镍物种后金颗粒的粒径由3.6 nm减小为2.4 nm,表明镍掺杂有助于提高金的分散度.而XPS结果显示,镍掺杂催化剂中金与镍存在电子转移,而镍仍以Ni O为主.H2-TPR结果表明,镍掺杂的催化剂前驱体中的金物种更容易被还原.O2-TPD结果证实,镍掺杂催化剂能够引入更多的氧空位,促进氧分子的吸附和活化,从而促进CO氧化反应的进行.CO-DRIFT结果表明,相比于氧化性气氛,采用还原性气氛预处理后金物种的电子云密度增加, CO吸附增强.而对于镍掺杂的催化剂,金物种吸附CO分子的能力进一步提高,有利于CO氧化反应的进行.综上,镍掺杂能够有效提高催化剂中金的分散度,增强催化剂对CO的吸附,促进氧气分子的吸附和活化,从而提高了催化剂的CO氧化活性.  相似文献   

6.
发展兼具高活性和高稳定性的规整非铂电化学催化剂无论对于燃料电池的推广应用还是基础研究都具有重要意义.我们将钯纳米立方体(Pd nanocubes)作为晶种,使用表面掺杂的手段制备了一种表面结构规整的钨掺杂钯纳米立方体(W-doped Pd nanocubes).通过改变合成过程中所加入羰基钨前驱体的量以调控表面钨的原子比例,继而获得了钨原子比例分别为0%,0.8%,1.2%,1.5%的纳米立方体.所制W-doped Pd nanocubes/C催化剂在碱性条件下的氧还原反应中表现出优异性能,其中1.2%W-doped Pd nanocubes/C催化剂性能最佳,在0.9 VRHE时比活性达1.18 mA cm~(-2),质量活性达0.25 A mg~(-1)Pd,分别是商业Pt/C催化剂的4.7倍和2.5倍.研究表明,随着钨的掺杂量从0%增至1.5%,钨掺杂钯纳米立方体的d带中心从-2.49 eV逐渐降至-3.08 eV.同时,光电子能谱结果表明,随着钨掺杂量的增加,钯的3d峰位向低能逐渐偏移,说明了钨掺杂导致了电荷由钨转向钯.而d带中心的下移能够将更多的反键态拉下费米能级,继而导致反应中间体的吸附减弱.因此,由钨到钯的电荷转移导致的d带中心的下移,继而引起的反应中间体对催化剂的吸附作用变弱是氧还原催化活性增强的原因.而过高的W掺杂(1.5%)导致活性的降低也可以用Sabatier规则解释.在循环测试10000圈之后,1.2%W-doped Pd nanocubes/C催化剂的质量活性仅仅减少了14.8%,而商业Pt/C催化剂减少了40%,可见其具有极佳的稳定性.而且循环测试之后的透射电镜表征显示,相比于团聚严重的商业Pt/C催化剂,1.2%W-doped Pd nanocubes/C催化剂仍然分散良好,其形貌也几乎没有发生变化.此外,该催化剂对乙醇氧化反应也表现出优异的性能.在1.0 mol L~(-1)氢氧化钾和1.0 mol L~(-1)乙醇混合溶液中,测试峰电流达6.6 A mg~(-1)Pd,是Pd nanocubes/C催化剂的2.2倍,商业Pd/C催化剂的5.1倍.这同样得益于适量钨掺杂所导致的催化剂d带中心—下移引起的含碳中间体吸附的削弱.经过1000 s的稳定性测试,1.2%W-doped Pd nanocubes/C同样表现出高于商业Pd/C催化剂的稳定性.优异的氧还原和乙醇氧化性能表明所制1.2%W-doped Pd nanocubes/C是一种极具潜力的双功能燃料电池催化剂.  相似文献   

7.
挥发性有机物(VOCs,例如甲苯和二甲苯)不仅危害人身健康,而且对大气环境造成严重污染.由于去除效率高、无二次污染以及耗能低等优点,催化氧化法被认为是消除VOCs的有效方法之一.该方法的关键是高效催化剂的研发.由于具有良好的低温催化氧化性能,过渡金属氧化物负载的贵金属催化剂备受关注.相比于单组分贵金属负载型催化剂,双组分贵金属负载型催化剂的催化活性、水热稳定性能和抗硫中毒性能均有显著提高.本文采用熔融盐法和聚乙烯醇保护的硼氢化钠还原法制备了八面体状Co_3O_4负载的AuPd(x(AuPd_y)/Co_3O_4;AuPd负载量x=(0.18,0.47,0.97)wt%;Pd/Au摩尔比y=1.85,1.93,1.92)合金纳米催化剂.采用X射线衍射、扫描电子显微镜、透射电子显微镜、选区电子衍射、氢气程序升温还原、氧气程序升温脱附和X射线光电子衍射等技术对催化剂物化性质进行了表征.利用固定床微型反应器评价了催化剂对甲苯和邻二甲苯完全氧化反应的催化性能.研究结果表明,采用熔融盐法制得的Co_3O_4具有规整八面体形貌,棱长约为300 nm.AuPd合金纳米粒子均匀分布在Co_3O_4表面,粒径为2.7-3.2 nm.在所得催化剂中,0.96(AuPd_(1.92))/Co_3O_4催化剂对甲苯和邻二甲苯完全氧化反应表现出较高的催化活性.在空速为40000 mL/(g·h)时,甲苯和邻二甲苯转化率达到90%所需的温度分别为180和187℃.我们认为0.96(AuPd_(1.92))/Co_3O_4催化剂较为优异的催化性能与AuPd纳米粒子和Co_3O_4之间的强相互作用和较高的吸附氧浓度有关.  相似文献   

8.
近十几年来,金原子簇(尺寸1-2 nm)逐渐发展成为一种新型的纳米材料。特别在近几年中,金原子簇催化剂广泛地应用于纳米催化中,例如选择性氧化还原以及碳-碳偶联等反应。与传统的金纳米颗粒(2 nm)显著不同,金原子簇具有独特的电子性质和结构,能很好地关联金原子簇催化剂的结构与其催化性能,特别是对金原子簇的催化反应机理的研究。在本综述中,我们阐明了金原子簇催化剂在碳-碳偶联反应中的应用,其中包括Ullmann、Sonogashira、Suzuki和A~3-偶联等反应。并进一步揭示了金原子簇表面有机配体(例如芳香烃硫醇vs脂肪烃硫醇)对催化反应的影响,以及其它金属在金核内部的掺杂(例如铜、银、铂、钯等)改变原子簇的电子结构从而来调控其催化性能。最后,在原子层面上关联金原子簇结构和催化性能,并初步探讨催化反应机制。金原子簇催化剂的深入研究将为高效金纳米催化剂的设计提供一些建设性的思路和策略。  相似文献   

9.
燃料电池具有能量转换效率高的优点,是能量转换与储存的高效器件之一.目前,燃料电池阴极氧还原反应(ORR)动力学缓慢,并且催化ORR大量使用铂碳(Pt/C)催化剂,由于Pt储量少,价格高,载体碳材料易发生碳蚀导致催化剂稳定性降低,限制了其进一步商业化应用.钯(Pd)与Pt为同族元素,具有相似的电子结构和化学性质,其储量是Pt的50倍,同时, Pd具有良好的抗甲醇毒性和抗一氧化碳毒性,因此,被视为燃料电池中阴极Pt催化剂的潜在替代品.但商用Pd/C催化剂的ORR活性较Pt/C差,因此,大量的研究工作集中在提高Pd基ORR催化剂的活性方面:将Pd与具有3d轨道的金属形成合金或将Pd负载到不同的载体上.通过选择合适的载体影响Pd的电子结构,从而提高催化剂活性和稳定性,是一种较简单的、有利于规模化生产Pd基ORR催化剂的方法.碳化硅(SiC)具有良好的电化学稳定性、热稳定性、机械强度和较强的供电子能力,可被用作ORR的金属催化剂载体.然而,由于金属与SiC作用较弱,需要制备特殊形貌的SiC或将SiC表面改性;通常,这些SiC基载体的制备过程复杂并且成本高.而在有氧条件下制备、保存或使用SiC时,...  相似文献   

10.
郝郑平  安立敦 《分子催化》1995,9(3):233-236
负载型金催化剂对CO氧化的催化性能(Ⅰ)郝郑平,安立敦,李胜利,王弘立(中国科学院兰州化学物理研究所,兰州,730000)关键词负载型金催化剂,一氧化碳氧化,制备因素1.前言金历来被用来做为货币保值和饰品材料,由于化学惰性和难于制备高分散微粒,直到1...  相似文献   

11.
《电化学》2020,(2)
为了促进燃料电池的广泛应用,必须研发一种高效、经济的氧还原(ORR)催化剂材料替代目前使用的昂贵的Pt基催化剂.本文合成了NiO@rGO、Pd-NiO@rGO和Ag-NiO@rGO三种催化剂材料,并对其ORR催化性能进行了比较研究.结果表明,三种材料均具有催化ORR的能力,但与NiO@rGO相比,Pd-NiO@rGO和Ag-NiO@rGO展示了更加优异的性能,主要表现在其4电子转移ORR过程、起始电位增加,中间产物的产率降低和稳定性提高.其中,Pd-NiO@rGO作为ORR催化剂的性能最好.  相似文献   

12.
正Gold shines brilliantly and eternally. In old ruins of 7000 years ago we find ancient gold jewelleries as they are now. Accordingly, gold has been considered as being chemically inert metal. In contrast, other noble metals such as palladium and platinum have been practically utilized for chemicals production and for automobile exhaust gas treatments. In early 1980s this understanding of gold was completely changed by  相似文献   

13.
负载型金催化剂催化CO氧化的性能(II)   总被引:3,自引:0,他引:3  
  相似文献   

14.
这里发现锰化合物能够催化芳香碳-氧键的还原断裂.就我们所知,目前还没有锰催化芳香碳-氧键断裂方面的报道.以二苯并呋喃为底物,对各种反应条件进行优化,得到的较佳反应条件为5%Mn(OAc)_2,3当量LiAlH 4,140℃温度,四氢呋喃溶剂.在这个反应条件下,多种芳香碳-氧键能够发生还原断裂.甲醇钠的添加能够有效地促进二苯醚等底物的反应.对反应机理进行了初步研究,结果表明反应可能经历自由基过程.  相似文献   

15.
目前,开发高效的阴极氧还原反应(ORR)电催化剂是实现燃料电池和金属-空气电池商业化发展急需完成的目标.在过去的几十年中,人们在探索廉价高效的ORR电催化剂(如N掺杂的非金属及非铂电催化剂)领域做了广泛的研究.在N掺杂的碳基ORR催化剂中,已知的N基活性位点主要分为四类,即吡啶类氮(P-N)、吡咯类氮(Py-N)、石墨化氮(G-N)和氧化类氮(O-N).尽管人们对这四种类型氮的活性位点做了大量的研究,但是它们在催化反应中起到的ORR催化作用以及催化机理和活性位点本身结构的关系仍不够明确.早期的研究中有人认为P-N或者Py-N是ORR催化活性位点,也有人认为是G-N起作用.最近也有研究表明,P-N和G-N都是ORR催化活性位点,只是在ORR中所起的催化能力不同.因此,很有必要认清这些问题.本文通过Hummer法酸性氧化一次和两次碳黑Vulcan XC-72(VXC-72)以及随后高温热处理,制备了一系列ORR催化剂VXCO-1,VXCO-2,VXCO-1(900)和VXCO-2(900),采用场发射扫描电子显微镜(SEM),N_2吸附脱附法,元素分析仪(EA),X射线光电子能谱(XPS),拉曼光谱仪(Raman),X射线衍射能谱(XRD),电化学循环伏安法和线性伏安法测试等手段研究Hummers法酸氧化和高温热处理对VXC-72形貌组成的影响,以及这些碳基中成分和其催化ORR能力的关系.SEM结果表明,Hummer法酸性氧化处理VXC-72一次和两次后可以逐层剥落其最外边的碳层结构,最终得到表面光滑的类片层状结构的碳材料(VXCO-1和VXCO-2).这种表面光滑的类片层状结构的碳材料比表面积大于处理前的VXC-72,而高温热处理之后的碳材料(VXCO-1(900)和VXCO-2(900))由于类石墨层碎片结构蒸发损失暴露出更多内部的微孔和介孔结构使比表面积增加.Raman和XRD结果表明,氧化处理使碳材料的石墨化程度增加,而高温热处理则降低了其石墨化程度.EA和XPS结果表明,Hummer法酸性氧化处理可以使在碳材料中掺入的N以石墨化的为主,高温热处理却使得石墨化氮转变为吡啶类的氮.ORR结果发现,活性的石墨化氮倾向于使ORR反应经历两电子过程,从而生成H2O2为主要产物;而吡啶类氮的活性位点更倾向于使ORR反应经过四电子过程,主产物是水.该结果有助于新型碳基氧还原催化剂的设计和分析.  相似文献   

16.
借助于一种全新的表面活性剂N,N-dimethyloctadecylammonium bromide acetate sodium(OTAB-Na),成功实现了对小尺寸钯纳米粒子微结构的控制。通过对合成条件的微扰,高度均匀且分散性良好的枝化结构和凹面体结构的钯纳米粒子被成功地制备。催化测试(利用氨硼烷作为氢化试剂来还原4-硝基苯酚为4-胺基苯酚)发现,钯纳米粒子的催化活性与其微观纳米结构相关,其中枝化结构的钯纳米粒子表现出了更为突出的催化性能。  相似文献   

17.
近年来可再生资源以及化工原料的多元化备受关注,生物资源成为其中的一个新亮点.糠醛是一种可由生物质转化而来的重要化工原料,将其催化还原直接转化为糠醇是构建以糠醛为平台化合物的生物基呋喃衍生物价值链的重要环节.长久以来,糠醛制糠醇研究主要集中在以H_2作氢源的加氢工艺及相关催化剂配方的优化、改进等方面,尽管在工业上已获得成功应用,但由于需大量消耗源于化石燃料的H_2,使得该路线总体上仍依赖于化石能源.此外,大量使用H_2所涉及的储存、运输和使用条件苛刻以及如何有效控制目标产物的选择性等问题也一直是糠醛传统催化加氢所面临的挑战.因此,寻求可替代传统氢气作氢源,更为经济实用且高效的糠醛高选择性催化还原制糠醇路线,对于发展以糠醛转化为技术核心的新一代糠醛基化工产业链,以及实现诸如5-羟甲基糠醛等其它重要生物质基平台化合物的还原转化,均具有重要意义.本文旨在通过实证性实验,考察以价廉且来源丰富的CO替代H_2来实现高选择性液相糠醛催化转化制糠醇的可行性.众所周知,CO不但是C_1化学工业中至关重要的基础原料,在发展并完善面向未来的低碳能源及化学品清洁合成新技术等方面也有着非常大的应用潜力.鉴于CO也是炼钢焦炉气的重要组成部分,因此开发新颖的基于CO的还原转化和相关反应新技术,不但可有效拓展CO的潜在应用范围,对于实现传统高能耗行业的节能减排和转型升级也有着重要的启示和借鉴意义.我们近期利用CO/H_2O为还原介质,在温和条件下实现了纳米Au催化取代硝基或羰基化合物高效、高化学选择性还原,本文系统研究了包括传统铂族金属在内的各类高分散贵金属催化剂、反应温度、反应压力以及反应时间等对糠醛转化率和糠醇选择性的影响.通过优化催化剂制备和反应条件,发现以CO/H_2O作为氢源,在金红石单相Ti O2负载纳米Au(Au/Ti O_2-R)的催化作用下,于90 oC,CO压力为4 MPa,糠醛与Au的摩尔比为200的条件下反应4 h即可实现糠醛至糠醇的定量转化.研究表明,上述过程中催化剂可多次循环使用;反应温度或反应压力的增加均有利于反应进行,且在糠醛与纳米Au的摩尔比高达2000甚至5000时,反应仍可完全进行到底.尤其值得一提的是,该催化体系对于反应原料中含有相当杂质的非新鲜提纯的粗糠醛亦具有很好的耐受性,甚至可直接以各种H_2/CO比例的来源广泛的合成气为氢源,实现目标反应,表明该体系是一种极具开发和应用潜力的糠醛转化制糠醇新技术.  相似文献   

18.
作为一种稳定、价廉的光催化剂,TiO_2被广泛应用于各种污染物的降解;但是,较大的宽禁带(~3.2 eV)和较低的电子迁移率不仅使TiO_2很难吸收可见光,而且光生电子和空穴的复合几率高,从而导致TiO_2的总体光电效率不高.因此,设计能够被可见光激发、并具有快速光生电子传输的TiO_2一直是研究热点.研究表明,Ti~(3+)自掺杂的TiO_2(还原态TiO_(2-x))不仅能够被可见光激发,而且使TiO_2具有良好的电子导电性,从而有利于提高TiO_2的光电转换效率.另外,非金属元素的掺杂能够减小TiO_2的禁带宽度,使TiO_2能够响应可见光并具有良好的可见光催化性能,其中S元素的掺杂被广泛研究.目前,S掺杂纳米TiO_2的制备通常采用TiS2,单质S,硫脲、二甲亚砜等为S源,但这类原料通常价格昂贵或者具有一定的毒性,因而实际应用受到限制.而制备Ti~(3+)自掺杂TiO_2的方法大都是基于"还原法",在真空或强还原性气氛如H_2,CO中加热TiO_2,或采用高能粒子(电子、氩离子)轰击.在实际应用中,这些方法存在步骤多、条件苛刻、反应时间长和设备昂贵等不足.而且,还原法反应通常发生在颗粒的表面,形成的Ti~(3+)很容易被空气和水中的溶解O2氧化,降低材料的稳定性.虽然在温和的液相中还原Ti4+可用于制备Ti~(3+)掺杂的TiO_2,但是由于反应过程中有副产物生成,需要进行后续处理才能得到纯的Ti~(3+)自掺杂TiO_2.因此,设计一种简单的制备S掺杂还原态TiO_(2-x)光催化剂仍具有十分重要的意义.前期我们采用H_2O_2氧化TiH_2得到不同状态的前驱体凝胶,然后进行不同方式的后处理得到Ti~(3+)自掺杂的纳米TiO_2.本文以TiH_2和H_2O_2反应得到的黄色前驱体凝胶为Ti源,以价格低廉、无毒、稳定的二氧化硫脲为S源和还原剂,采用不同的方法制备了S掺杂的还原态TiO_(2-x)光催化剂.本文初步研究了在凝胶中加入二氧化硫脲后进行水热处理,以及将干燥的凝胶粉末与二氧化硫脲混合热处理对所得产物的影响.并与纯的TiO_2、还原态TiO_(2-x)和S掺杂TiO_2的光吸收、电化学、光催化性能进行对比研究.采用X射线衍射、透射电子显微镜、高分辨透射电子显微镜、X-射线光电子能谱、紫外-可见漫反射光谱、比表面分析和电化学工作站等技术对产物的结构、形貌和光电性能进行了表征.以罗丹明B(RhB)溶液为模拟废水,考察样品的可见光催化性能.结果表明,不同的后续处理方式不仅影响S掺杂TiO_(2-x)的结晶性和形貌,而且影响产物的光吸收性能和电子传输性能,从而使不同条件下所得产物的可见光催化性能不同.其中,采用热处理方式得到的S掺杂TiO_(2-x)样品在可见光下降解RhB的速率分别是纯的TiO_2,TiO_(2-x)和S掺杂TiO_2的31,2.5和3.6倍,而且样品具有良好的循环稳定性.  相似文献   

19.
用配体调控策略,通过钯催化发展了乙烯基环状碳酰胺和异氰酸酯之间的两类差异性转化,选择性地合成了多取代的共轭二烯脲类化合物和四氢嘧啶酮衍生物.当反应以Pd2(dba)3?CHCl3 (dba:dibenzylideneacetone)为催化剂前体、以单齿配位的N,N-二甲基亚磷酰胺(Mono Phos)为配体时,可以高选择性地得到一系列线性的共轭二烯脲类衍生物;将配体改为双齿配位的1,3-双(二苯基膦)丙烷(DPPP)时,利用相同的原料则能够合成一系列环状的四氢嘧啶酮类化合物.这一研究通过简便的配体调控策略,为含氮化合物的多样性合成提供了新方法.  相似文献   

20.
采用高分子辅助的浸渍还原法,制备得到膨胀石墨(EG)负载的纳米钯催化剂(Pd-EG),采用X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等手段对催化剂组成、结构、形貌和价态进行了表征,并考察了Pd-EG催化剂在六价铬还原反应中的活性.结果表明,催化剂中纳米钯颗粒均匀分散在膨胀石墨上,平均粒径为4.37 nm,金属负载量质量分数为0.446%.该催化剂对六价铬还原反应具有良好的催化性能,可将六价铬完全转化为三价铬,在pH=4.0及45℃条件下反应转化频率(TOF)达到3186 h-1;催化剂经过多次重复使用后的活性仍保持稳定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号