首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
环己醇和环己酮俗称KA油,是用于制备尼龙材料的己二酸和己内酰胺的重要中间体.工业上制取环己醇和环己酮的方法主要为苯酚加氢法、环己烯水合法和环己烷氧化法,其中环己烷氧化法的应用最为普遍,包括硼酸氧化法、过氧化物氧化法和钴盐催化氧化法三种路线.为获得适宜的环己醇和环己酮选择性,工业上环己烷氧化单程转化率通常控制在5.0%以下,从而使得产物选择性在80%以上.因此,现有环己烷氧化法生产KA油的最大挑战是如何同时获得高环己烷转化率和高KA油选择性.迄今,已有多种催化剂被尝试用于环己烷氧化反应,包括金属卟啉、金属氧化物、分子筛、碳纳米管和金属-有机骨架材料等.由于均相催化剂无法从环己烷氧化反应体系中分离出来,导致催化剂不能重复利用,因此多相催化剂的研究更受青睐.另外,由于采用氧气为氧化剂时具有环境友好和更高的原子经济性,因此氧气选择性氧化环己烷反应已逐渐成为环己烷氧化法制KA油中最具挑战性的研究.目前,氧气为氧化剂时的环己烷转化率通常低于过氧化氢和叔丁基过氧化氢等为氧化剂时的转化率,其关键在于适用于固(催化剂)液(环己烷)气(氧化剂)反应体系的高性能催化剂.本课题组前期研究了系列金属掺杂分子筛(Ce/AlPO-5,Ce-MCM-41/48和Mg-Cu/SBA-15等)对氧气催化氧化环己烷的反应性能,发现无论是稀土还是过渡金属掺杂,通过影响环己烷氧化反应的自由基产生和反应历程,可显著提高环己烷转化率或者KA油的选择性.基于此,本文选择原料易得、成本较低和氧化能力强的氧化锰(MnOx)作为具有强氧化能力的过渡金属氧化物的代表,深入研究了MnOx的焙烧温度对其结构和选择性氧化环己烷反应性能的影响,同时研究了反应条件对催化剂性能的影响.结果表明,400℃焙烧制得的催化剂(MnOx-400)比350,450和500℃焙烧制得的催化剂具有更高的活性.在最佳反应条件(140℃,O2起始压力0.5 MPa,反应4 h)下,使用20 mg MnOx-400可使环己烷转化率达8.0%,KA油得率为5.0%.过高的反应温度、过长的反应时间和过高的反应压力都会导致产物被过度氧化,KA油选择性降低.另外,该催化剂重复使用10次,其活性没有明显下降,显示出了很好的稳定性.表征测试结果表明,MnOx催化剂在不同温度焙烧后形成了不同的结晶形态:焙烧温度小于500℃时,催化剂主要组成为Mn3O4和Mn5O8,500℃时主要为Mn3O4,Mn5O8和Mn2O3.而且随着焙烧温度升高,MnOx催化剂的比表面积逐渐降低.相比于350℃焙烧制得的催化剂,MnOx-400催化剂具有更好的结晶形态,这可能是造成其活性较好的原因.而相比于MnOx-400,500℃焙烧制得的催化剂表面Mn4+含量和表面吸附氧含量较低,使其吸附和活化氧能力降低,从而导致催化剂活性低于MnOx-400;但是吸附和活化氧能力的降低有利于减缓反应产物的深度氧化,因而KA油的选择性增加.  相似文献   

2.
纤维素是自然界最丰富的生物质资源,大量来源于农林废弃物.近年来,人们相继发展了以纤维素为原料合成高附加值化学品的多条路径,它们有望替代目前相应的化石资源路径.其中,以碳化钨(W2C)、三氧化钨(WO3)和钨酸(H2WO4)为代表的钨基催化剂表现出选择性断裂糖分子C-C键的独特催化性质,结合不同种类的共催化剂,可以将纤维素直接解聚转化为乙二醇、1,2-丙二醇、乙醇和乳酸等多种重要的C2,3产物.然而,钨基催化剂在纤维素反应中的真实状态和活性相结构尚不确定.W2C最早被报道可以高效催化纤维素直接转化为乙二醇.随后,我们发现晶态WO3也具有相似的催化性能,W2C在反应后其表面被WO3所覆盖.在纤维素反应中,氢气可以将H2WO4还原为钨青铜(HxWO3)物种.本文以WO3和H2  相似文献   

3.
C-H键活化是近年来发展最为迅速的研究领域之一,从自然界中广泛存在C-H键的简单底物为原料,利用C-H键直接活化策略来构建高附加值的化学品是一类具有高原子经济性的化学反应.然而,由于C-H键的稳定性使得C-H键的选择性官能团化过程具有极大的挑战.例如,烃类化合物的C-H选择性氧化生成醇/酮化合物在C1化学以及有机合成反应中占据重要地位,同时C-H键的高解离能以及氧化试剂的高活性往往使得这类反应的选择性难以调控.近日,中科院大连化学物理研究所张涛和王爱琴领导的团队在脂肪族、芳香族烃类化合物的C-H选择性氧化反应中取得新的研究进展.作者使用Fe-N-C单原子催化剂,化学计量的叔丁基过氧化氢为氧化剂,在室温条件下实现了烃类化合物的选择性氧化反应,一系列底物包括带有吸电子基团的硝基(-NO_2)、供电子基团的甲氧基(-OCH_3)、杂环化合物以及脂肪族化合物(环己烷)均可以高选择性(98%)实现转化.事实上,Fe-N-C单原子催化剂的活性与选择性可与均相催化剂([Cu((R,R)-BPBP)]+)相媲美,同时该催化剂在绿色水溶剂中表现出优异的循环稳定性.这项工作的另一个意义在于建立起多相催化领域中活性位点与反应性能之间的构效关系.通过HAADF-STEM,XPS,XAS,ESR及穆斯堡尔谱等表征手段,清楚地证明Fe-N-C催化剂中三价铁离子存在多种配位结构(FeN_x,x=4,5,6),催化剂活性与Fe-Nx的特定结构密切关联.C-H键选择性氧化反应的最高活性位点为中自旋FeN_5位点,其活性高出低自旋/高自旋的FeN_6位点一个数量级,是FeN_4位点活性的3倍之多.而该FeN_5结构的数量在Fe-N-C-700的单原子催化剂上仅占18%,说明Fe-N-C催化剂的活性具有很大的提升空间.文中报道的Fe-N_x-C催化剂可被认为是一类新型的单原子催化剂,其中,N_x基团为一种强有力的配体.由于单原子催化剂兼具均相催化剂孤立均一的活性位点及多相催化剂易于循环使用的优势,单原子催化剂有望成为连接均相催化与非均相催化的桥梁.目前,单原子催化剂已成为多相催化领域一个新的研究热点与前沿.这篇工作中的FeN_5位点与血红蛋白的Fe中心结构类似,从这个角度出发,FeN_5位点为连接酶催化剂与多相单原子催化剂提供了一个很好的案例.然而,FeN_5位点周围环境的细微变化都会直接影响其反应活性以及选择性,从而导致多相催化中的FeN_5具有较差的O_2活化能力.因此,设计更为高效的多相单原子催化剂,实现类似于酶催化中高效高选择性地活化底物分子,仍然具有很大的挑战与空间.  相似文献   

4.
无溶剂体系中非均相催化剂催化环己烷氧化反应研究   总被引:1,自引:0,他引:1  
本文合成了苯乙烯-马来酸酐共聚物(SMA)桥联N-羟基邻苯二甲酰亚胺(NHPI)和Co/ZSM-5两种非均相催化剂, 用FT-IR、 XRD进行了结构表征. 考察了这两种非均相催化剂在无溶剂体系中对环己烷的催化氧化行为, 并对各反应因素的影响进行了研究. 结果表明: 在最佳反应条件下, 环己烷的转化率可达26.8%, 此时KA油、己二酸和环己基过氧化氢的选择性分别为71.6%、 10.9% 和2.6%. 在测试温度范围内, 反应速率常数Ka 和反应温度之间存在Arrhenius关系, 相关系数是0.9878, 数学表达式为lnKa = -3012/ T+ 1.279. 催化剂的稳定性研究显示两种非均相催化剂都具有很高的热力学稳定性, 可以重复使用五次.  相似文献   

5.
The catalytic activity of copper zirconium phosphate(ZPCu) in the selective oxidation of alcohols to their corresponding ketones or aldehydes, using H2O2 as an oxidizing agent, was studied. The oxida‐tion reaction was performed without any organic solvent, phase‐transfer catalyst, or additive. Steric factors associated with the substrates influenced the reaction. The catalyst was characterized using X‐ray diffraction, inductively coupled plasma atomic emission spectroscopy, energy‐dispersive X‐ray spectroscopy, and scanning electron microscopy. It was shown that the interlayer distance increased from 0.74 to 0.80 nm and the crystallinity was reduced after Cu2+ intercalation into the layers. This catalyst can be recovered and reused three times without significant loss of activity and selectivity.  相似文献   

6.
NO_x是主要的大气污染物之一,对环境和人体健康具有极大的危害.其主要来源之一是柴油机尾气排放,V_2O_5-WO_3/Ti O_2催化剂是现阶段大规模商用的SCR催化剂,但V_2O_5-WO_3/Ti O_2催化剂相对较窄的温度窗口和V_2O_5的生物毒性使得迫切需要新型的环境友好的高效SCR催化剂,其中分子筛因其特殊的孔道结构和催化性能受到广泛的关注.用于SCR过程的分子筛主要包括ZSM-5,Beta,MOR,SAPO-34和SSZ-13等,通常采用Cu,Fe,Mn和Co等过渡金属对其进行改性,通过调变分子筛的表面酸性和氧化还原性能,提高催化剂的SCR活性.Beta分子筛具有三维12元环孔道结构,相对其它分子筛具有较好的水热稳定性,而且制备工艺成熟,价格低廉,因此该类分子筛催化剂在SCR过程中具有很好的应用前景.我们采用离子交换法制备了系列Fe-Beta催化剂,发现将相同质量硝酸铁溶解在不同体积去离子水中,配制成不同浓度的硝酸铁溶液后与分子筛进行离子交换反应,制备得到的Fe-Beta催化剂中Fe的含量和NH_3-SCR催化活性均存在显著差别.在此基础上,我们固定硝酸铁溶液浓度(0.02mol/L),通过增加溶液的体积,分别制备了Fe含量为(2.6,6.3和9)wt%的Fe-Beta分子筛.结果表明,Fe负载量为6.3 wt%时,Fe-Beta催化剂表现出最好的催化活性,NO_x转化率大于80%的温度窗口为202–616°C.虽然三个催化剂在比表面积,孔径和Fe的价态上没有明显的差别,但Fe含量为6.3 wt%的催化剂在保持相对较高的Fe负载量的同时具有更多的孤立Fe~(3+)物种,同时具有较好的NH_3和NO吸附性能以及NO氧化能力,这些特性使得该催化剂相对于其它两个催化剂表现出更高的NH_3-SCR催化活性.当Fe含量增加到9 wt%时,催化剂中FexOy纳米颗粒的含量大幅增加,使得NH_3非选择性氧化能力加强,从而导致高温NH_3-SCR反应活性大幅下降.  相似文献   

7.
甘油是生物柴油生产过程中生成的副产物,随着生物柴油产量的快速增长,甘油的量也迅速增加.据估计,到2020年甘油的产量将比需求量高出6倍.因此,将过剩的甘油转化为其它更有价值的化学品具有重要意义.在已经发表的文献中,各种碳材料负载的Pt催化剂被广泛应用于液相中甘油的选择性氧化.但是,由于Pt纳米颗粒与碳载体之间相互作用较弱,因此Pt纳米颗粒易团聚和流失,而且Pt的过度氧化和有机羧酸的强吸附也导致Pt催化剂失活.最近的研究表明,采用含氮的碳载体可以增强Pt与载体间的相互作用,这种载体还有可能将电子转移给Pt,从而有效提高Pt的分散度、活性和稳定性.与此同时,引入其它金属如Co,Cu,Bi,Sb等与Pt形成合金也能有效改善催化剂的活性和稳定性.我们在前期工作中曾经发现多壁碳纳米管(MWCNTs)负载的PtSb合金在甘油氧化反应中具有很高的活性和二羟基丙酮选择性,可以抑制C-C裂解,并提高了催化剂的稳定性.但是在MWCNTs上组装PtSb颗粒的过程繁琐且危险,需要对载体进行氧化(浓硝酸)、嫁接硫醇、浸渍金属、高温还原等,同时MWCNTs的价格也较高.本文采用简单的热解方法将氮和锑同时引入到碳基载体中,并用此载体制备了具有核壳结构的Sb@PtSb2/NC催化剂.首先将葡萄糖、三聚氰胺和SbCl3混合后在氮气中于700 ℃热解得到含Sb和N的多孔碳载体,再通过浸渍还原法将Pt还原并负载到该载体上即得到具有核壳结构的Sb@PtSb2/NC催化剂.该催化剂对催化甘油氧化具有较高的活性,同时具有较好的稳定性.氮气吸附表征表明,引入N和Sb都能提高载体的比表面积和孔体积,其中Sb的引入使得催化剂表面形成了多孔结构(SEM表征).XRD、TEM和EDS表征证明了具有核壳结构的Sb@PtSb2颗粒在载体表面上的生成.Raman光谱表明N和Sb的引入增加了碳缺陷,有可能带来新的活性位点.O2-TPD表征表明Sb@PtSb2/NC对氧的吸附量远高于Pt/NC,这可能归因于PtSb2合金中Pt-Sb金属间的原子间距增大,有利于氧的吸附和表面扩散,从而显著提高了催化剂活性.XPS表征表明了从N到Pt的电子转移,而这种富含电子的Pt具有更高的活性.将制备的催化剂用于考评催化甘油氧化的活性,发现相比于Pt/NC,Sb@PtSb2/NC催化剂催化甘油氧化具有显著增加的活性,二羟基丙酮选择性也明显提高,在60 ℃,0.6 MPaO2气氛下,100 mg催化剂与5 mL 0.2 g/mL甘油水溶液反应3 h得到了65.3%的甘油转化率,以及39.2%的二羟基丙酮选择性和51.8%的甘油酸选择性.这可能归因于载体比表面积的增加、更多的碳缺陷,以及PtSb2合金的形成.使用五次后的催化剂仍保持较高的催化活性,证实了该催化剂具有较好的稳定性.  相似文献   

8.
 在机械混合的 MgO-Mg3(VO4)2, Mg3(VO4)2-Mg2V2O7 和 V2O5-MgV2O6 双晶相催化剂体系上, 研究了晶相间协同催化效应对环己烷氧化脱氢反应性能的影响. 催化剂表征和反应结果表明, 双晶相间协同效应或源于不同晶相间形成的内聚界面, 或遵从溢流氧的遥控机理, 或产生于其中一个晶相完全包覆整个催化剂表面. 当在 Mg3(VO4)2 上进行环己烷氧化脱氢反应时, 可加入适量 MgO 或 Mg2V2O7 以提高其催化性能. 在 80%Mg3(VO4)2-20%Mg2V2O7 催化剂上, 当环己烷转化率为 15.5% 时, 环己烯选择性达 44.9%.  相似文献   

9.
采用共沉淀法制备了MnOx-CeO2-WO3-ZrO2催化剂,考察了催化剂焙烧温度对O2和H2O存在下NH3选择性催化还原(NH3-SCR)NO的影响,并利用低温N2吸附、X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)、NH3程序升温脱附(NH3-TPD)和CO脉冲反应对催化剂进行了表征.结果表明在NH3-SCR反应中,催化剂的低温活性随焙烧温度的提高而降低,这是由于催化剂表面化学吸附氧和酸性位减少引起的;催化剂的高温活性随焙烧温度的提高先增加后减小,这与催化剂表面最易释放氧数量的变化趋势相反.700°C焙烧的催化剂具有良好的低温活性和最宽的反应温度窗口,在空速为90000 h-1的条件下,该催化剂的起燃温度(50%NO转化率)为189°C,且反应温度在218-431°C范围内,NO转化率可达到80%-100%.  相似文献   

10.
负载型纳米催化剂表面结构与其催化性能之间关系的研究一直受到广泛关注.由于其结构复杂使得人们在研究催化剂构效关系时遇到了很多困难.近年来,大量研究发现反转催化剂在众多反应中表现出优越的催化性能.反转催化剂是将过渡金属氧化物负载于其它金属表面.和传统金属/氧化物催化剂相比,反转催化剂更能突出氧化物在催化反应中的重要作用.众多研究表明,在氧化物-金属界面处存在特殊的作用,这种作用可以改变氧化物的电子特性和化学性质,进而产生较高的催化性能.傅强等人创建了金属氧化物负载于Pt表面的反转催化体系,其表现出了高的低温CO氧化反应性能.在氧化物和Pt之间的界面限域效应可以稳定氧化物中配位不饱和的金属阳离子.这种配位不饱和的氧化物提供了活化O_2的活性位.目前,反转催化剂的研究主要集中在单晶模型体系中,在负载型催化剂中的研究还较少.我们以炭黑(CB)为载体,将还原后的Pt-Fe和Pt-Co催化剂经过酸洗制备了一种表面富Pt核为合金的结构.考察了酸洗后的Pt-Fe和Pt-Co催化剂经过不同温度氧化后的结构变化,并讨论了其结构与CO完全氧化反应(COOX)和CO选择氧化反应(CO-PROX)性能的关系.X射线粉末衍射(XRD),电感耦合等离子体发射光谱(ICP),透射电镜(TEM)和X射线光电子能谱(XPS)表征结果表明,还原后的Pt基催化剂经过酸洗可以选择性去除纳米粒子表面的3d过渡金属,形成表面富Pt体相为合金的结构.将酸洗后的Pt-Fe和Pt-Co催化剂在不同温度下空气中氧化,发现近表层的Fe(Co)会扩散到粒子表面上,形成过度氧化的Fe_2O_3(Co_3O_4)表面结构.氧化后的催化剂在COOX和CO-PROX反应中表现出截然不同的催化性能.酸洗后的Pt-Fe(Pt-Co)催化剂经过不同温度氧化后在COOX反应中活性都较差,室温下的CO转化率只有不到30%,CO完全转化的温度超过100 ℃,相当于纯Pt催化剂的活性.这说明Pt表面过度氧化的Fe_2O_3(Co_3O_4)对CO氧化反应的促进作用不明显.而氧化后的催化剂在CO-PROX反应中表现出较高的活性,250 ℃(或350 ℃)氧化后的酸洗Pt-Fe催化剂室温下的CO转化率接近100%,250 ℃(或350 ℃)氧化后的酸洗Pt-Co催化剂室温下的CO转化率也达到了70%.结合表征和反应结果,我们认为氧化处理形成的表面过度氧化的金属氧化物(Fe_2O_3,Co_3O_4)在COOX的催化性能较差.通入CO-PROX反应气后,气氛中大量H_2的存在和Pt表面的氢溢流效应可以使得表面Fe_2O_3,Co_3O_4在室温下被还原成配位不饱和的FeO,CoO.这种配位不饱和的氧化物在表面Pt的限域作用和大量H_2气氛下比较稳定,并且具有较强的活化解离O_2的能力,进而提高了CO-PROX反应的活性.为了进一步证实催化剂表面氧化物与其催化性能的关系,我们在室温下进行了两种反应气的循环实验测试.测试结果表明,对于氧化后的酸洗Pt-Fe催化剂,COOX反应中的表面Fe_2O_3和CO-PROX反应中的表面FeO可以通过变换反应气氛实现两种氧化物的相互转变,并表现出完全不同的催化性能.对于氧化后的酸洗Pt-Co催化剂,CO-PROX反应中形成的CoO表面结构在COOX反应中也比较稳定,在两种反应气中表现出相似的催化性能.  相似文献   

11.
生物柴油因原材料来源广、可再生、安全性能好、环境友好及可替代石化柴油等优势被认为是一种极有发展前景的可再生能源,正逐步成为当今国际新能源开发的热点.作为生物柴油生产过程的主要副产物,甘油多相氧化制备具有高附加值的氧化产物是生物柴油产业链上的重要分支.目前,应用于该催化氧化体系的催化剂主要为负载型单金属(Au,Pd和Pt)和双金属(Au-Pd,Au-Pt和Pt-Bi)催化剂.其中,Au催化剂在碱性条件下对甘油氧化反应有较高的催化活性和甘油酸选择性,并且该催化剂稳定性高,不易在较高氧气压力的反应条件下因氧中毒而失活.但是,由于反应过程中碱的存在,反应体系中部分产物间可相互转化,从而掩盖催化剂的产物选择性本质,增大了产物分析、分离和催化剂作用机理研究的难度.而Pd和Pt催化剂不受酸、碱反应条件的限制,能够在无碱助剂作用下实现甘油催化氧化.与Au基和Pd基催化剂相比,Pt基催化剂可实现在酸性或中性反应条件下甘油选择性氧化产物的一步生成,同时具有较高的催化活性及稳定性,且氧化产物收率较高.一直以来,以碳材料为载体负载的金属催化剂被广泛应用于甘油液相氧化反应.研究表明,催化剂活性与碳的孔径分布有关,随着碳载体微孔比例的增加,催化剂活性下降.此外,载体表面基团对金属活性有着重要影响.例如,载体表面含氧基团的吸电子作用可降低载体表面电子的流动性(电子密度和导电性),从而阻碍甘油氧化反应过程中OH–的吸附和再生,导致反应活性降低.因此,开发微孔比例小、富含负电性基团的碳载体成为甘油氧化过程中急需解决的问题之一.本文通过热解碳纳米管(MWCNTs)和三聚氰胺的混合物,在碳纳米管表面直接生长得到氮杂石墨烯(NG-MWCNTs),并采用SEM,N_2吸附,TEM和XRD对所得复合材料进行了表征.实验发现,相比于单纯的MWCNTs和直接热解三聚氰胺所得的产物CN_x,NG-MWCNTs具有更高的比表面积(173 m~2/g)和更大的平均孔径.此外,NG-MWCNTs非常适合作为Pt催化剂的载体,Pt平均粒径可小至1.4±0.4 nm.所制备的Pt/NG-MWCNTs催化剂在甘油选择性氧化反应中具有很高的催化活性和甘油酸选择性(甘油转化率和甘油酸选择性分别可达64.4%和81.0%),且具有可重复使用性能.Pt/NG-MWCNTs催化剂优异的催化活性不仅与载体表面高分散的Pt有关,而且与N原子对Pt的给电子作用有关.  相似文献   

12.
本文用常压脉冲微反技术考察了五种铂铼系列催化剂的制备方法和活性间的关系,并用电镜和量热滴定法分别对不同制备方法的铂铼催化剂生成表面合金的可能性及其表面酸性变化作了一些探讨。  相似文献   

13.
α,β-不饱和醇是药物和香料等精细化学品合成的重要中间体.在工业上将α,β-不饱和醛与强还原剂如Na BH4等反应后可合成对应的不饱和醇,但该方法易导致环境污染等问题.α,β-不饱和醛选择性加氢制备α,β-不饱和醇是原子经济反应,符合绿色化学要求.但α,β-不饱和醛分子中含有共轭的C=C键和C=O键,在热力学和动力学上皆倾向于C=C键的加氢生成饱和醛,导致α,β-不饱和醇的选择性较低.因此提高α,β-不饱和醛中C=O的加氢选择性具有挑战性.巴豆醛属于典型的α,β–不饱和醛,其选择性加氢生成巴豆醇常作为模型反应用于研究催化剂构效关系.近年来,通过胶体方法制备配体保护的金属纳米颗粒在选择性加氢反应中表现出较好的选择性,可归因于配体产生的立体效应和电子效应等因素,但配体的存在往往抑制反应物在活性金属表面的吸附,从而导致反应活性下降.因此,如何克服活性-选择性的“跷跷板”瓶颈具有重要意义.本文以十四烷基三甲基溴化铵(TTAB)为保护剂,采用胶体法合成了Ir纳米颗粒,并将其负载在载体六方氮化硼上,获得一系列通过不同焙烧温度的催化剂,通过各种表征手段研究了催化剂结构和表面性质,并考察其在巴豆醛气相...  相似文献   

14.
烯烃类化合物,如乙烯和丙烯,是工业生产的关键原料,它们可以通过选择性氧化转化为环氧乙烷(EO)和环氧丙烷(PO)等高附加值的化学品.目前,烯烃类化合物转化主要通过热化学途径实现,通常需要高温高压条件,并可能导致过度氧化生成CO2,因而选择性较低,且对经济和环境效益不友好.与此相对,电催化反应以电能作为驱动力,通过优化催化剂、电解液和反应电位等,有望在相对温和的条件下提高反应的选择性和能量效率,为高选择性烯烃氧化提供一种潜在策略.然而,当前烯烃的电化学选择性氧化的电流密度较低,整体生产成本相对较高,因此,有必要进一步研发高效且稳定的电化学选择性氧化烯烃的体系.本文综述了近期关于烯烃选择性电化学氧化的研究进展,研究主要集中在两个方面:一是烯烃在电极和电解液界面上直接进行电化学氧化的方法;二是通过电化学反应原位生成氧化剂(如Cl2和H2O2)后,再对烯烃进行氧化的间接方法.对于烯烃的直接电化学氧化,反应的选择性可以通过调控几何效应和电子效应来优化.具体来说,通过引入如氯离子这样的物种,减少催化剂表面的可用...  相似文献   

15.
燃料电池是一种清洁高效的能量转换装置,可将储存在燃料中的化学能直接转化为电能。在过去的几十年中,燃料电池的开发取得了重大进展。聚合物电解质燃料电池,尤其是以质子交换膜燃料电池(PEMFC)为代表,可以实现高效率、高功率密度、快速启动,因而受到了广泛的关注。然而,PEMFC因使用昂贵的Pt基催化剂而导致成本较高,阻碍了其大规模的应用。近年来发展的碱性膜燃料电池(HEMFC)与PEMFC结构相似,但使用可传导氢氧根离子的聚合物电解质,并提供碱性工作环境。HEMFC由于具有使用非Pt电催化剂和较便宜双极板的可能性而备受关注。然而,HEMFC的一个巨大的挑战是阳极氢氧化反应(HOR)相对缓慢的动力学,这使得其需要较高载量的阳极催化剂才能实现较高的电池性能。因此,对于HEMFC而言,阳极催化剂的成本也很高,亟需开发在碱性条件下低成本、高活性和高稳定性的HOR催化剂。在本综述中,我们总结了HOR催化剂的最新研究进展,涉及文献中提出的各种HOR机理和催化剂,并分析了基于阳极催化剂成本的HEMFC性能。我们发现,最新报道的非Pt HOR催化剂可以降低阳极催化剂的成本,到达与PEMFC接近的成本水平。最后,我们对HOR的进一步研究进行了展望。  相似文献   

16.
研究了金属有机骨架化合物NH2-Ga-MIL-53对多种N-苯基亚胺底物的Strecker反应的催化性能,研究结果表明:(1)NH2-Ga-MIL-53具有高度催化活性和良好的底物普适性;(2)亚胺底物上取代基的电子效应是影响催化反应速率的关键因素,在亚胺底物上引入给电子取代基团(如甲氧基和苯基)可以加快反应速率,引入吸电子取代基团(如三氟甲基和硝基)可降低反应速率;(3)亚胺底物上取代基的位置对于催化反应速率同样具有重要影响,在亚胺底物的邻位引入甲氧基取代基团时,反应速率加快得最明显;(4)作为非均相催化剂,NH2-Ga-MIL-53可循环使用9次而不失活且保持骨架结构不变;(5)NH2-Ga-MIL-53和Ga-MIL-53催化性能的对比结果表明,NH2-Ga-MIL-53结构中的氨基可以作为路易斯碱活性中心协同路易斯酸催化中心(Ga3+)有效促进strecker反应的进行。此外,由NH2-Ga-MIL-53、六水合硝酸镓和2-氨基对苯二甲酸对Strecker反应的催化效果的对比可知,NH2-Ga-MIL-53的孔结构是提高反应产物专一性的重要因素。  相似文献   

17.
研究了金属有机骨架化合物NH_2-Ga-MIL-53对多种N-苯基亚胺底物的Strecker反应的催化性能,研究结果表明:(1) NH_2-Ga-MIL-53具有高度催化活性和良好的底物普适性;(2)亚胺底物上取代基的电子效应是影响催化反应速率的关键因素,在亚胺底物上引入给电子取代基团(如甲氧基和苯基)可以加快反应速率,引入吸电子取代基团(如三氟甲基和硝基)可降低反应速率;(3)亚胺底物上取代基的位置对于催化反应速率同样具有重要影响,在亚胺底物的邻位引入甲氧基取代基团时,反应速率加快得最明显;(4)作为非均相催化剂,NH_2-Ga-MIL-53可循环使用9次而不失活且保持骨架结构不变;(5) NH_2-Ga-MIL-53和GaMIL-53催化性能的对比结果表明,NH_2-Ga-MIL-53结构中的氨基可以作为路易斯碱活性中心协同路易斯酸催化中心(Ga~(3+))有效促进strecker反应的进行。此外,由NH_2-Ga-MIL-53、六水合硝酸镓和2-氨基对苯二甲酸对Strecker反应的催化效果的对比可知,NH_2-Ga-MIL-53的孔结构是提高反应产物专一性的重要因素。  相似文献   

18.
基于氧气(空气)为氧源的选择性催化分子氧氧化技术在制备含氧精细化学品或食品添加剂与医药等的重要中间体方面一直受到科学界的广泛关注.由于碳氢化合物中碳氢键的反应惰性和分子氧的自旋禁阻作用,设计与开发高效催化剂或催化体系以实现碳氢化合物的选择性氧化是当前催化氧化领域的研究热点.在已发展的过渡金属盐、仿生催化剂、有机催化剂、酶、碳材料和卤化物等众多催化剂中,以羟基邻苯二甲酰亚胺(NHPI)为代表的羟胺有机催化剂由于在温和条件下的卓越催化性能而备受瞩目.尽管基于羟胺有机催化剂的催化体系具有良好的工业应用前景,但仍存在催化剂高温易分解、使用量较大和可回收性较差等缺点.近年来,许多实验与理论工作围绕改进这些缺点展开,设计了一系列羟胺有机催化剂及其协同催化体系,如在NHPI结构中修饰疏水链基团、吸电子基团、N-烷氧基团和离子液体,或固载金属-有机框架材料、无机物和聚合物,或组合光催化剂.尽管已有大量综述总结了相关研究进展,但尚未见到有关近年来发展的多羟胺有机催化剂及其高效催化氧化性能的综述报道.本文综述了近15年来多羟胺有机催化剂选择性催化分子氧氧化碳氢化合物的研究进展.首先,简要概述了二羟基邻苯二甲酰亚胺(NDHPI)和三羟基异氰基尿酸(THICA)两种多羟胺有机催化剂的合成方法,系统介绍了它们在各类碳氢化合物氧化中的高效催化性能,并与普遍应用的NHPI的催化性能进行对比.由于NDHPI与THICA具有多羟胺的独特结构,它们只需要比NHPI更少的用量便可获得比NHPI更高的催化氧化效率,可以直接利用高压空气实现对碳氢化合物的选择性催化氧化,并且在较高温度下依然具有较好的催化效果.在此基础上,介绍了联系实验与理论之间的重要工作,总结了多羟胺有机催化剂的合理设计策略.理论计算研究揭示了NDHPI与THICA的催化性能优于NHPI的主要原因是具有类似于吸电子效应的多羟胺与多氮氧自由基结构能显著增强催化剂的夺氢活性.通过对NDHPI结构的进一步修饰和夺氢活性研究,提出了该类催化剂的合理设计策略:在芳环体系中增加共轭的羟胺基团数量,或在NDHPI苯环中掺杂N原子或引入离子对基团都能提高催化剂的夺氢活性;增大芳环共轭体系对催化剂的夺氢活性影响较小,但该活性仍高于NHPI.这也为基于碳材料的非均相共轭多羟胺有机催化剂的开发提供了理论依据.最后,结合羟胺有机催化剂的发展现状和上述设计策略,设计了基于金属卟啉/席夫碱等仿生催化剂、(含离子对结构)聚合物、非均相碳材料和多N-烷氧基团等几种具有潜在发展前景的模型多羟胺有机催化剂,分别讨论了这些催化剂的优点和局限性,并展望了多羟胺有机催化剂的可能应用及其在催化氧化过程中仍需系统研究的方向.  相似文献   

19.
谢艳玲  祝琳华  司甜 《分子催化》2021,35(6):518-528
为了提高纳米金在埃洛石纳米管(halloysite nanotubes,HNTs)上的负载率并改善负载型金催化剂的稳定性,采用经过有机硅烷(N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷,AEAPTMS)化学改性的埃洛石纳米管(AHNTs)作为载体,利用AEAPTMS上的-NH2能够配位俘获金离子的特点,实现了金的前驱体H...  相似文献   

20.
水氧化(2H2O→4e-+4H++O2↑)是自然以及人工光合作用系统中的关键半反应,为还原过程提供反应所必需的质子和电子.但水氧化反应在热力学和动力学上的固有挑战以及对O-O键生成步骤的有限机理认识,使其成为构筑高效人工光合系统的瓶颈.为此,人们开发了大量的金属催化剂,利用金属中心活化水分子,并生成活性金属氧物种以促进O-O键的生成.其间,金属中心往往需要达到极高的氧化态,进而导致生成的高价金属氧化物具有极高的催化活性,极易诱导催化剂降解等副反应的发生,难以兼顾活性和稳定性.因此,深入认识和理解水氧化反应的催化过程及O-O键的生成机制是突破该领域瓶颈的重点.氧化还原活性配体与金属的协同作用被认为是调节电荷累积过程、平衡催化剂活性与稳定性的有效策略,受到了广泛的关注.然而,氧化还原活性配体调节金属催化中心活性的机理仍有待进一步阐明.近期,本研究组发展了一类具有氧化活性配体的单核钌水氧化催化剂[(LHN5-)Ru-OH]+  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号