首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
杜诚  高小惠  陈卫 《催化学报》2016,(7):1049-1061
面对日益严重的全球能源危机,燃料电池作为一种清洁的能源转换装置在全世界范围内得到了广泛关注。燃料电池是一种能够使氢气、甲醇、甲酸和乙醇等小分子燃料和氧气发生氧化还原反应,并将其化学能转换为电能的新型装置。在燃料电池中,由于在阴极发生的氧气还原反应动力学速率缓慢而使得燃料电池的整体转换效率过低,目前商用的燃料电池一般采用贵金属铂作为催化剂来加速其反应。但由于铂的价格高昂且在反应过程中易被反应中间产物毒化而活性下降,使得燃料电池的整体成本过高,从而阻碍了燃料电池的实际商业化。为此,人们尝试利用非贵金属催化剂来替代铂基催化剂。找到一种廉价且高效的氧还原催化剂是目前燃料电池发展急需打破的瓶颈问题之一。近年来,人们发现铁、钴、锰等地表储量丰富的金属元素具有较高的氧还原催化活性。然而,作为一种最常见的金属元素,金属铜在氧还原催化剂方面研究较少。人们发现一些生物酶,如虫漆酶、细胞色素c氧化酶等能够高效地催化氧气还原,如虫漆酶在催化氧还原过程中仅表现出约20 mV的过电位,与金属铂(约200 mV)相比基本可忽略。通过研究这些活性生物酶,人们发现其活性中心均为含Cu的物质。进一步研究这些生物酶的活性位点,然后合成不同的铜基纳米材料去模拟酶的活性位点,以期望能够实现经济、高效催化氧还原反应。
  本文总结了基于铜的纳米材料在催化氧还原方面的研究进展,首先介绍了一些氧还原实验测试中的基本概念,主要包括不同电解质条件下氧还原的反应机理以及常用的测试手段和性能评价指标。氧还原催化剂的性能应该综合活性、稳定性、抗毒化能力以及催化剂成本等多个方面来评价与比较。随后,我们概括性地介绍了铜基氧还原催化剂的发展现状。根据铜基催化剂的不同类型,我们主要分为三个部分进行介绍:(1)铜的复合物,这部分主要从模拟虫漆酶和模拟细胞色素c氧化酶两个方面分类介绍;(2)铜的化合物,这部分主要介绍了不同价态的铜的氧化物和铜的硫化物;(3)其它铜基催化剂,这部分主要介绍基于铜的尖晶石结构、有机框架材料及载体负载的铜纳米粒子作为氧还原催化剂,以及铜作为掺杂元素在提高锰的不同氧化物催化活性中的作用。最后,通过综合分析铜基氧还原催化剂的发展历程以及目前燃料电池的研究进展,我们对基于铜的氧还原催化剂的未来发展方向做了一些展望。继续研究、探索酶的氧还原活性位点以及机理依然是重中之重,只有完全理解了酶的催化机理,才能够很好的设计并合成材料来对其活性位点进行模拟,从而制备出高性能且低成本的铜基氧还原催化剂。希望本文能够使读者认识到燃料电池氧还原催化剂的发展现况,以及铜基氧还原催化剂目前存在的问题及其未来的发展方向。  相似文献   

2.
方亚蓉  郭彦炳 《催化学报》2018,39(4):566-582
近年来,全球经济和工业高速发展带来的环境问题,不仅严重影响着经济社会的可持续发展,更极大地危害着人类健康.石油化工、医药生产和交通运输等过程产生的气、液、固相污染物可直接或间接造成臭氧层空洞、光化学烟雾及水体污染等重大环境问题.气相污染物中,CO和可挥发性有机物(VOCs)不仅具有生物毒性,更是形成光化学烟雾等大气污染的主要前驱体.NO_x和SO2会造成酸雨的形成,极大地破坏生态系统.工业废水中难分解的有机污染物可对环境造成持续性破坏.而不完全燃烧产生的碳烟颗粒物不仅影响气候和大气环境,同时可导致心血管疾病高发,危害人体健康.源头控制是环境污染治理的关键,而催化净化是当前污染物源头控制最有效的技术之一.因此,设计和开发稳定、高效的环境修复催化剂是科学家们面临的一个关键问题.传统贵金属(Pt,Rh,Pd)催化剂虽然催化活性高,但是存在价格昂贵且易中毒等不足.而过渡金属及其氧化物因具有高活性、价格低廉和高储量等特点有望成为贵金属的替代催化剂.铜是具有3d轨道的过渡金属,有活泼的物理化学性质,是工业中大量应用的有色金属.铜基氧化物因高氧化还原电势和低环境危害被广泛应用于热催化、电催化和光催化.基于文献报道,铜基催化剂主要分为三类:铜氧化物(CuO_x),负载型铜氧化物(CuO_x/support)和固溶体铜氧化物(CuO_x-X).本篇综述首先探讨了铜氧化物的价态、晶体结构、形貌、暴露晶面以及载体与催化剂活性之间的内在联系,阐明铜基催化剂结构与性能的构效关系及高效催化剂的设计原则;继而全面总结了近年来不同类型的铜基材料在催化净化环境污染物中的应用,主要介绍了以下5类反应:CO的催化氧化,NO_x的选择性催化还原(SCR),VOCs的完全燃烧,废水中有机污染物降解,以及碳烟颗粒物催化燃烧.我们深入阐述铜氧化物的催化活性位点和催化机制;分析负载型铜基催化剂的比表面积、分散度、协同作用和界面作用对催化剂的活性和稳定性的影响;阐明固溶体催化剂的独特原子组成设计与性能关系,为高效催化剂设计提供思路.此外,本综述对铜基催化剂在环境催化中的研究现状以及尚未解决的问题进行了剖析与展望.通过铜氧化物表面调控,复合催化剂的界面调控,具有更高稳定性和抗中毒性的高效催化剂有望开发成功,而团簇及单原子铜催化剂也有望在此领域有所突破.  相似文献   

3.
中空纳米结构具有比表面积大、传质可控和活性位点明确等优势,其结构设计与电催化应用在能源转化与储存领域引起了广泛关注.特别是中空贵金属纳米材料用于氧还原催化时,中空内腔引入到贵金属纳米结构,不仅暴露更多的活性位点,还能减少贵金属的用量,这将为贵金属催化剂的大规模应用提供一个理想的研发平台.本文综合评述了近年来中空贵金属的合成策略及其氧还原催化应用.首先,回顾了中空贵金属在氧还原催化剂研制中的优势与意义;然后,介绍了近期关于中空贵金属的制备策略(硬模板法、软模板法、自模板和无模板法等)及其优势;最后,分析了中空贵金属在氧还原领域所面临的挑战,并对其设计进行了展望.  相似文献   

4.
钟国玉  王红娟  余皓  彭峰 《化学学报》2017,75(10):943-966
质子交换膜燃料电池是一种直接将化学能转化为电能的能量转换装置,具有环境友好、能量密度高、转化效率高等优点,能够应用于便携能源及燃料电池电动车领域.但燃料电池阴极氧还原需要大量的铂基催化剂,铂价格昂贵、储量有限、易中毒的缺点限制了它的实际应用.因此,开发低成本、高活性、高稳定性的阴极非贵金属催化剂将能够显著推动质子交换膜燃料电池的大规模商业化应用.其中碳基非贵金属催化剂作为最有可能替代铂的氧还原催化剂,引起了广泛的研究.基于此,本文首先简单介绍了氧还原的机理;其次将碳基非贵金属催化剂分为过渡金属氮碳催化剂和非金属掺杂碳催化剂,对它们在材料制备和活性中心的研究进行了总结和讨论;最后,报道了碳基非贵金属催化剂在质子交换膜燃料电池单电池中的应用进展.  相似文献   

5.
开发可替代铂的非贵金属催化剂是今后燃料电池催化剂的重要发展方向,本文结合课题组研究的工作,总结了近年来非贵金属在氧还原催化方面的研究进展。并着重从材料合成和机理两个方面分析了目前在开发过渡金属氧化物、含过渡金属的氮掺杂碳材料和杂原子掺碳材料中存在的问题,提出了这些非金属催化剂今后的研究重点和努力方向。  相似文献   

6.
碱性介质中的氧还原反应是金属-空气电池和阴离子交换膜燃料电池的重要电化学过程。但是,其动力学缓慢,因而引起了对高效电催化剂的广泛研究。其中,非贵金属催化剂可有效地规避铂基催化剂成本和储量的问题,而备受关注。但其挑战在于将性能提高到可与Pt基催化材料媲美。鉴于非贵金属催化剂的组成和结构对催化性能有着至关重要的影响,精准地调控催化剂的结构有望消除非贵金属催化剂和商业铂基催化剂的活性差距。在该评述中,我们致力于总结通过结构调控来提升性能的研究进展。我们首先介绍了四种极具代表性的非贵金属催化剂,包括非金属碳基材料、金属化合物、石墨化碳层包覆金属颗粒、原子分散的金属-氮-碳材料,突出了催化活性位点和催化机理。随后,针对于这些催化剂,我们归纳了从微纳尺度到原子层面的结构调控策略,如分级多孔结构的设计、界面工程、缺陷工程以及原子对活性位点的构建。我们着重讨论了结构和性能之间的依赖关系。从加速传质、增加可及的活性位点数量、可调控的电子状态和多组分之间的协同效应,讨论了这些结构变化引起的活性改进的起源。最后,我们对该领域存在的挑战以及未来的前景进行了展望。  相似文献   

7.
燃料电池中广泛使用的铂基催化剂价格昂贵、储量低、容易失活,因此亟待开发廉价、高效非铂催化剂. 过渡金属(Fe、Co、Ni等)/杂原子共掺杂催化剂、杂原子掺杂(N、P、S、F等)碳材料以及碳材料包覆过渡金属复合物是目前发现的几类性能优异的非贵金属氧还原催化剂. 其中碳材料包覆过渡金属催化剂作为一类新型的高性能催化剂,对其研究还有待深入. 本文主要阐述了国内外在包覆型非贵金属氧还原催化剂方面的研究进展,从合成,性能,机理等方面对该类催化剂进行了总结,力求助益于该类催化剂的发展.  相似文献   

8.
燃料电池可以在接近室温条件下将氢或烃类中蕴含的巨大化学能通过电化学途径直接转化为清洁、稳定、可持续的电能,因而被视为极有前景的、能够满足日益增长的世界能源需求的终极解决方案之一.在一个典型的氢燃料电池中,氢在正极氧化而氧在负极还原,从动力学角度说,氧还原反应(ORR)比氢氧化反应进行的慢得多.无论是在酸性还是碱性条件下,氧的还原都可以一个四电子过程或是两个双电子过程进行,当然在酸性和碱性环境中反应的机理不同.铂一直是最有效的ORR催化剂,但受到价格昂贵、稳定性差和易中毒等因素的制约,目前非铂催化剂成为越来越引人瞩目的发展方向.本综述试图从分子催化剂、金属纳米材料催化剂、金属氧化物催化剂和新兴的二维材料催化剂等方面,选取近十年来最能代表ORR电化学催化剂方面成就的例子分析其优缺点,并为今后该领域的研究提供一些有益的思路.典型的分子催化剂是卟啉类化合物,当这种四齿的N4配体与过渡金属特别是铁、钴络合时,往往显示出良好的ORR催化性能,多数情况下其中的过渡金属中心、配体和碳支撑体系共同组成催化剂的活性中心.在另一些报道中,邻菲罗啉或是连吡啶型N_2化合物也可以作为配体使用.第四和第五副族的很多金属形成的不同价态的氧化物都具有氧还原活性,比如MnO_x,CoO_x,TiO_x,ZrO_x,IrO_x等.金属氧化物表现出易于修饰,不容易团聚和抗腐蚀等诸多优点,而其良好的ORR性能与表面的缺陷密切相关,因此钙钛矿型氧化物ABO_x也引起人们的广泛关注,人们可以通过调节氧化物的晶型、尺寸和组成来获得更好的催化性能.近年来随着液相合成技术的发展,人们可以制备出理想形状和尺寸的单分散纳米粒子,然后通过旋涂、自组装等手段将其修饰到合适的电极上以获得增强性能的ORR催化剂.通过形状与尺寸调控,或组合成其它复杂的纳米结构,都有可能提高催化活性或是稳定性,因此有关纳米催化剂的研究日趋增多.在此基础上,考虑到石墨烯的可修饰性和良好的电化学性能,纳米材料复合石墨烯所形成的二维或三维结构也可提供很好的氧还原催化性能,而MoS_2代替石墨烯作为支撑物所构成的二维催化剂也是值得注意的研究方向.综上所述,尽管现有的非铂催化剂仍难以完全满足商业化的要求,设计理念和合成方法的快速发展有望在不远的将来解决这一难题.而设计合成可控尺寸、形状、组成和表面形貌的纳米催化剂在很大程度上将加速这一进程.  相似文献   

9.
李渊  陈妙迎  卢帮安  张佳楠 《电化学》2023,29(1):2215002-22
质子交换膜燃料电池(PEMFCs)阴极氧还原反应(ORR)动力学迟缓,需要消耗大量的贵金属催化剂,这限制了其商业化应用。目前,原子级分散的M-N-C (M=Fe,Co,Mn等)催化剂受到人们青睐,有望替代铂催化剂。在过去的几十年里,M-N-C催化剂取得了很大的进步,具有优异的ORR活性,而且燃料电池初始性能有希望接近传统的Pt/C催化剂。然而,这些高活性的Fe-N-C催化剂在燃料电池实际工作条件下的稳定性比较差。这篇综述总结了在高效氧还原M-N-C催化剂方面的最近进展,主要概述了作者课题组在限域策略和自旋调控方面的贡献。此外,我们还总结了几种提高活性的有效方法以及近期的关于揭示M-N-C催化剂的降解机制的认识,如金属浸出、碳腐蚀、质子化和微孔淹没都会造成催化剂降解。为改善M-N-C催化剂的寿命,我们概括了文献中的缓解策略,包括控制催化剂中S1/S2位点、使用非铁基催化剂、增强金属氮键、改善碳载体的耐腐蚀性和使用质子缓冲液等。最后,提出了目前原子级分散的M-N-C催化剂的存在的挑战和可能的解决方案。  相似文献   

10.
以热解型Fe/N/C为代表的碳基非贵金属材料被认为是当前最具潜力替代铂的非贵金属氧还原催化剂,其综合性能的进一步突破,对于推动质子交换膜燃料电池商业化应用具有重要意义。对热解型Fe/N/C催化剂活性位结构的深入认识是实现催化剂高活性位密度和高稳定性理性设计的关键。本文总结了热解型Fe/N/C活性位的研究进展,重点介绍了非晶态铁氮配位活性中心、氮掺杂和碳缺陷三类活性位构型。由于热解型Fe/N/C是非均相的,结构非常复杂,导致在活性位认识上还存在诸多争议,本文总结阐述了活性位结构的不同观点。最后,我们展望了Fe/N/C催化剂活性位研究的未来方向。  相似文献   

11.
《电化学》2017,(2)
氮掺杂的多孔碳材料有望能取代当前普遍应用于质子交换膜燃料电池和金属-空气电池阴极中的贵金属氧还原催化剂,因而备受关注.模板辅助合成技术作为一种可靠、通用的方法已经在多孔碳电催化剂的制备中得到了广泛的应用.在碳基ORR电催化剂中,其ORR活性受到诸多因素的影响,如掺杂剂的浓度及其在碳上的分子掺杂态、孔洞结构、比表面积以及碳基材料的导电性等.本文对近期氮掺杂多孔碳电催化剂的设计、制备、功能化及其在氧还原电催化中的应用研究进展进行了总结,同时展望了模板辅助合成法的一些发展趋势.  相似文献   

12.
近年来电解水产氢作为一种具有前景的制备及储存可再生能源的方法受到了各界的广泛关注.在此过程中,电解水催化剂是提高能源转换效率的关键.优秀的催化剂应具备高催化活性、高稳定性、低成本以及可大规模生产等性质.科研工作者对电解水的两部分反应,即析氢反应以及析氧反应均进行了广泛及深入的研究.目前,贵金属催化剂,如铂基、钌基催化剂的催化活性要高于其他元素催化剂,但由于其价格昂贵,储量较少使得贵金属催化剂无法得到大规模应用,因此发展非贵金属催化剂对绿色能源的发展具有重要意义.一般而言,催化剂的结晶度越高,其催化活性越好,而近年来非晶催化剂以其更高的催化活性位密度也越来越受到人们的重视.同时,非晶催化剂的成分更加灵活,相比晶体催化剂来说非晶催化剂可以在更大范围内对成分进行调节.此外,非晶催化剂的制备通常都在较为温和的反应条件下进行,这也能够降低生成成本,促进其工业化发展.在这篇综述里我们介绍了电解水反应的基本原理,总结了近期非晶析氢、析氧以及双功能催化剂的研究进展.并随后探讨了电解水反应目前的难点并对非晶催化剂的制备进行了展望.  相似文献   

13.
在现代社会中氨是一种重要的工业原料,广泛应用于化工业、塑料制造,炸药以及染料等行业。由于氨气中不含碳,氢容量大、能量密度高且易于运输,已经被视为一种绿色能源替代品。Haber-Bosch方法在全球合成氨中起着主导作用,但其过程在高温高压条件下进行,且伴随着高能耗和CO_2排放的问题。电催化氮还原反应(NRR)有望成为常规条件下低成本且环境无害的替代方法,且具有太阳能、风能和其他可再生能源相同的应用潜力。然而,由于惰性的N≡N键,它需要有效的电催化剂来驱动氮气-氨气的转化。迄今为止,人们一直在努力探索高性能催化剂,以实现高效率和选择性。通常,贵金属催化剂具有较高的NRR效率,但是稀缺性和高成本限制了它们的大规模应用。因此,人们将注意力集中在丰富的过渡金属(TM)催化剂上,该催化剂可以通过空的轨道接受氮气分子的孤对电子,同时提供丰富的d-轨道电子进入氮气的反键轨道。然而,这些催化剂可能释放金属离子,导致环境污染,并且大多数金属电催化剂也可能促进金属与氢成键,从而在电催化反应过程中促进了析氢反应(HER)。近年来,非金属催化剂已经成为一个研究热点。非金属催化剂主要包括碳基催化剂(CBC)以及一些硼基和磷基催化剂。通常,碳基催化剂具有多孔结构和较大的表面积,这有利于暴露更多的活性位点,并为质子和电子的传递提供了丰富的通道。本文总结了近期非金属电催化剂(MFCs)在电化学NRR中的设计和发展状况,包括碳基、硼基和磷基催化剂。此外,大多数非金属化合物的路易斯酸位也可以接受氮气的孤对电子并通过形成非金属和氮成键来吸附氮气分子,从而进一步扩大了它们在电催化NRR中的潜力。与金属基催化剂相比,非金属催化剂的占据轨道只能形成共价键或共轭π键,从而阻碍了电子从催化剂到氮气分子的转移以及分子的活化。我们重点讨论了掺杂型催化剂(N,O,S,B,P,F掺杂以及共掺杂)、有机聚合物、氮化碳及缺陷和表面修饰催化剂。最后,我们还讨论了提高NRR性能的方法,展望了非金属电催化剂的发展前景。  相似文献   

14.
实现质子交换膜燃料电池(PEMFC)的商业化应用亟需开发出低成本的高效氧还原(ORR)电催化剂以替代昂贵的Pt基材料.过去十余年,研究人员对由M-Nx活性位点和富缺陷碳质基底组成的热解M-N-C基单原子催化剂进行了深入的研究,以期进一步提高催化剂的性能并降低成本.其中, Fe-N-C基单原子催化剂表现出了较好的催化性能和巨大的应用潜力.近年来人们发现,在单原子催化剂中引入另一种金属原子组成的双原子催化剂具有特殊的几何构型和电子结构,有利于反应过程中原子间相互作用,使催化性能进一步提高.其中,在Fe-N-C基催化剂中引入另一种金属原子组成的Fe-M-N-C双原子催化剂(M代表金属)可以进一步激发Fe-N-C催化剂的本征活性,相关研究也吸引了越来越多的关注.本文综述了Fe-M-N-C基双原子催化剂催化ORR过程的研究进展.首先,讨论了双原子催化剂催化ORR的机制,其中引入的第二种金属原子通过协同和/或调制效应发挥作用.其后,系统总结了Fe-M-N-C的合成方法、表征技术和计算方法,以进一步推动双原子催化剂的研究.再后,根据金属原子之间的相互作用,将双原子催化剂分为Ma...  相似文献   

15.
通过电化学手段将CO2转化为高附加值的化学品和燃料是缓解能源短缺与环境危机的一种重要方法.在电还原过程制备的所有含碳产物中, CH4拥有最高的热值(56 k J/g),是最重要的化学键能储备载体之一.本文以先前报道的反应机理为出发点,从催化剂设计策略的角度总结了CO2电还原制CH4的最新研究进展.催化剂设计策略包括亚纳米催化位点构筑、界面调控、原位结构演变以及串联催化剂构筑.基于已有的理论预测与实验结果,获取对制备CH4反应机理更深层次的理解,进而反馈指导高效催化剂的设计合成.亚纳米催化位点构筑可有效抑制反应过程中的C-C偶联,进而提升CO2电还原制CH4的催化性能.界面调控利用活性相与衬底间的协同作用,可优化含氧中间体的结合能,确保反应按预期路径进行.原位结构演变可构建热力学稳定的活性相,进而增强CO2电还原制CH4的催化活性.串联催化通过构筑多种活性位点将总包反应分为不同阶段,可有效打破...  相似文献   

16.
铂基催化剂是目前氢氧燃料电池中实际应用的阴极氧还原催化剂,由于铂昂贵的价格以及稀缺性,开发非贵金属氧还原催化剂对于氢氧燃料电池的规模化应用非常必要.碳基非贵金属氧还原催化剂,包括金属-氮掺杂碳(M–N–C)材料和非金属杂原子掺杂碳材料,是目前最重要也是研究最广泛的两类非贵金属氧还原催化剂.对其活性位点的认知是研究热点之一,也是明显提高性能和宏量制备的关键所在.对于金属-氮掺杂碳催化剂,目前受到广泛认可的活性位点包括:M–N_x/C(x=1,2,3,4)、Nx–C、包覆的纳米金属粒子活化的碳层等.对于非金属杂原子掺杂碳材料(如氮掺杂碳材料),氮原子毗邻的碳原子一般被认为是活性位点.但由于原料本身、制备过程等因素,可能引入痕量的金属元素,严格意义上的非金属杂原子掺杂碳材料难以制备,使得明确其活性位点非常困难.结合本研究组在该领域的工作,本文介绍了当前上述两类催化剂在研究方面的进展,总结分析了几种对活性位点探索和确认的主流认识,以期有助于碳基非贵金属氧还原催化剂的进一步研究.  相似文献   

17.
氧还原(ORR)可分为4e~-体系和2e~-体系.在燃料电池中,O_2经过4e~-体系直接生成H_2O,经过2e~-过程直接产生H_2O_2,H_2O_2可以产生电能,是替代石油或氢气的理想能源载体,而且H_2O_2在实际生活生产中也具有广泛应用.但是,燃料电池中2e~-体系氧还原反应非常缓慢,故开发高效、低成本的氧还原催化剂已成为近年来的研究热点.本文主要综述了近些年氧还原2e~-体系电催化剂的研究进展,并对它们的选择性、活性和稳定性进行深入探讨.最后,对电化学制备H_2O_2的最新进展作了简要总结,并对今后的研究挑战作了展望.  相似文献   

18.
为了克服传统Pt系催化剂价格昂贵、稳定性差的缺点,采用热解新型Ti O2/聚苯胺(PANI)复合物的方法合成了Ti O2/C催化剂.用扫描电子显微镜、X射线光电子能谱、X射线衍射、傅里叶变换红外光谱、拉曼光谱、透射电子显微镜、循环伏安法和线性扫描伏安法等方法研究了热处理和PANI复合比例对复合物的形貌、成键、晶相组成及氧还原性能的影响.结果表明,PANI与Ti O2间存在相互作用,可以抑制Ti O2的团聚和锐钛矿向金红石的转变.热处理制得Ti O2/C的氧还原活性随着PANI载体含量增加先升高后降低,PANI和Ti O2质量比为35/100时,催化剂的氧还原活性最高.同时,循环伏安和时间-电流曲线测试表明,已制备的复合材料在催化氧还原反应进行时具有较好的稳定性.  相似文献   

19.
刘聪  梅轩豪  韩策  宫雪  宋平  徐维林 《催化学报》2022,(7):1618-1633
随着化石燃料的消耗,全球碳排放与日俱增,由此引发的温室效应对全球气候变化带来巨大的挑战,温室气体CO2的减排与利用迫在眉睫.利用太阳能、风能等可再生资源生产的电能能够将CO2还原为一系列有附加值的化学品如醇、酸等有机小分子,人为构造碳循环网络,实现碳中和.本文综述了电催化CO2还原反应(CO2RR)催化剂的调控策略和结构效应.从本征结构和外部结构的角度阐述了催化剂活性位点的调控策略.同时讨论了CO2RR催化剂的结构效应,如串联催化、协同效应和限域催化.关于催化剂的调控策略,从催化剂的本征结构和外部结构两方面总结了近年CO2RR催化剂的研究进展.特定的元素或化合物可以表现出不同的晶体结构,造成局部电子结构差异.而局部电子结构与催化剂的催化性能密切相关,调整晶体结构成为本征结构调控的核心问题,因此本文探讨了如何通过电化学方法和纳米晶体合成调节催化剂的本征结构.与本征结构不同,催化剂的外部结构与活性位点的微环境有关.催化剂的外部结构调节主要基于各种电子结构的协同...  相似文献   

20.
采用微波辅助乙二醇法制备了一系列酸处理后的不同管径(8–15,20–30,30–50,50 nm)的碳纳米管(CNT)负载铂(Pt)催化剂(Pt/CNT)。通过X射线光电子能谱(XPS)、X射线衍射(XRD)、热重分析仪(TGA)、透射电子显微镜(TEM)对所制得催化剂进行结构表征;采用循环伏安法(CV)和线性扫描伏安法(LSV)对其催化性能进行测试。结果表明,不同管径的碳纳米管对Pt的粒径、载量和分散性有一定程度影响;然而,不同CNT管径的催化剂表现出明显不同的催化氧还原反应(ORR)活性。采用管径为8–15 nm的CNT作为载体制备的催化剂(Pt/CNT_8)的Pt载量最高,表现出有很好的催化活性和稳定性。Pt/CNT8在0.9 V时Pt的质量活性为0.188 A?mg~(-1),是商业催化剂(JM Pt/C)的2倍。经扫描5000圈稳定性测试之后,Pt/CNT_8的半波电位负移(~7 mV)远远小于商业JM Pt/C半波电位的负移(~32 mV),表现出优越的催化ORR稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号