首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
低碳烯烃(乙烯、丙烯和丁烯)是重要的有机化工原料,是现代石油化工的基础,主要通过石脑油裂解和烷烃脱氢制备。现阶段我国原油对外依存度已超过60%,“多煤、缺油、少气”的能源现状决定了以煤或天然气为原料经甲醇制取石化产品成为一种重要的替代途径。甲醇制取低碳烯烃(MTO)过程成为连接煤化工和石油化工的桥梁。 ZSM-5分子筛以其高效的甲醇转化能力、优异的低碳烯烃选择性和出色的抗积碳性能成为非常理想的 MTO反应催化剂。研究发现 ZSM-5分子筛催化 MTO反应过程中,乙烯的生成规律与其它 C3–C7链状烯烃不一致,认为乙烯主要来源于芳烃缩环/扩环循环,而 C3–C7链状烯烃主要来源于烯烃甲基化/裂解循环,两种循环同时存在。本文于300°C在 ZSM-5分子筛上进行 MTO反应,通过考察不同空速(WHSV)条件下的 MTO反应性能和分析催化剂内留存物种的生成和所起的作用,研究甲醇转化机理。气相流出物种和催化剂内留存物种的分析表明, ZSM-5分子筛催化 MTO反应时遵循双循环机理——以多甲基苯和多甲基环戊二烯为主要活性物种的芳烃循环机理和以链状烯烃为主要活性物种的烯烃循环机理。在双循环机理中,芳烃循环和烯烃循环并不是简单叠加,而是相互影响,芳烃循环产生的烯烃可以作为烯烃循环的活性物种促进烯烃循环,烯烃循环中较高级的烯烃经过环化、氢转移作用,能够转化成富氢的烷烃和贫氢的芳烃、环戊二烯物种,贫氢的芳烃和环戊二烯物种又可以作为芳烃循环的主要物种促进芳烃循环的进行。氢转移反应是联系烯烃循环和芳烃循环的重要过程,与反应过程中原料甲醇与催化剂床层的接触时间有关,12C/13C甲醇切换实验揭示了双循环机理与氢转移反应的相关性,通过调变原料甲醇与催化剂床层的接触时间,可以调变氢转移反应的剧烈程度,进而对催化剂上芳烃循环和烯烃循环的甲醇转化能力产生不同的影响。当空速较低时,进料甲醇与催化剂床层的接触时间较长,有利于产物烯烃的氢转移反应,加速了分子筛催化剂上芳烃物种和环戊二烯物种的生成和累积,促进了芳烃循环,主要由芳烃循环生成的乙烯和多甲基苯的气相选择性提高;反之,当空速较高时,进料甲醇与催化剂床层的接触时间减少,产物烯烃的氢转移反应受到抑制,氢转移反应的产物——芳烃和环戊二烯物种的生成数量和累积速率降低,芳烃循环活性不高,使得烯烃循环成为甲醇转化的主要途径, C3–C7烯烃显示出更高的活性,在气相流出物种中的选择性也更高。总之,原料甲醇与催化剂床层的接触时间能够显著影响催化剂内留存物种的生成和累积,进而改变两种循环的比重。这些发现对于实现 ZSM-5分子筛催化 MTO反应过程中的产物烯烃和芳烃的选择性调控具有重要意义。  相似文献   

2.
多级孔结构ZSM-5分子筛的合成过程复杂。利用双模板剂,通过优化晶化条件(如晶化时间与晶化温度)和Si/Al物质的量比等一步水热晶化合成了具有多级孔结构的ZSM-5分子筛,并采用XRD、N_2吸附-脱附、吡啶红外吸脱附、SEM和TEM等方法对样品的晶体结构、孔道结构、表面酸性和形貌等进行了表征。结果表明,一步法合成多级孔结构ZSM-5分子筛的适宜条件是:晶化温度160-180℃,晶化时间24-96 h,反应物组成为SiO_2/Al_2O_3/Na_2O/CTAB/TPABr/H_2O=1/x/0.4/0.05/0.12/280,(x:50-240)。其中,晶化温度160℃、晶化时间48 h和以Si/Al物质的量比50的凝胶合成的样品具有有序的介孔(平均尺寸3.60 nm)结构、较高的结晶度和较强的酸性。  相似文献   

3.
多级孔分子筛由于其高的比表面积、良好的传质性能和可调控的孔径等特性,引起了广大科研工作者的研究兴趣.近年来,通过选择性脱除骨架硅或铝,成功合成了多级孔沸石分子筛材料.但是由于骨架原子的脱除使分子筛的结晶度降低,进而使其催化效率降低.通过硬模板法(如炭黑、介孔硅球、气凝胶等),也用于合成多级孔沸石分子筛.然而,这种方法制备过程较为复杂,且成本较高.因此,亟需发展新的多级孔分子筛的制备方法.此外,在工业应用中,沸石分子筛催化剂通常需要做成整体柱状或片形以消除固定床反应器的床层压降.合成整体型沸石分子筛的传统方法是在沸石分子筛成型过程中添加SiO_2和Al_2O_3等无机粘结剂.虽然该方法简单易行,但沸石分子筛的孔道结构容易被破坏,而且无机粘结剂的存在使分子筛活性中心的密度减少.为了解决这些问题,合成整体型多级孔沸石分子筛,不仅具有较强的机械稳定性,适应于工业,而且其多级孔道有利于分子的扩散,从而具有较高的催化活性.针对上述问题,我们以海绵作为模板,通过蒸汽辅助结晶(steam-assisted crystallization,SAC)方法,制备具有多级孔道的整体型ZSM-5分子筛.通过X射线衍射(XRD)、氮吸附脱附、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、固态核磁共振和氨气的程序升温脱附(NH3-TPD)等手段对分子筛进行了结构与性质表征.XRD和固态核磁共振的结果表明,成功合成了不同Si/Al的ZSM-5分子筛.SEM和TEM结果进一步确定了合成的整体型多级孔ZSM-5分子筛(记作M-ZSM-n,n代表Si/Al的摩尔比),由于分子筛颗粒的堆积形成的介孔,海绵模板提供的固体骨架形成的大孔,分子筛本身的微孔,共同构成了微孔-介孔-大孔的整体型ZSM-5分子筛.透射电子显微镜上配备的X射线能谱仪(EDS)结果表明,分子筛中的Si和Al元素能够均匀的分布.氮吸附脱附证明所得整体型分子筛具有明显的介孔结构.NH3-TPD结果表明,不同Si/Al的整体型多级孔ZSM-5分子筛具有不同强度的酸性,其酸性强度:ZSM-5(60)M-ZSM-90M-ZSM-40M-ZSM-60.苯甲醇和己酸的液相反应进一步验证了这一结论,而且合成的整体型多级孔ZSM-5分子筛比传统的ZSM-5分子筛(记作ZSM-5(60))表现出更优异的催化活性.  相似文献   

4.
含锆ZSM-5分子筛上丙烯齐聚反应的研究   总被引:3,自引:2,他引:3  
以正丁胺(NBA)为模板剂,通过水热法直接合成了Zr/ZSM-5分子筛。XRD分析表明Zr/ZSM-5分子筛结晶度良好,但衍射峰的强度稍有差别。SEM显示样品分子筛表面规整,为3 μm~5 μm的棒状晶体。采用NH3-TPD法对分子筛进行了酸性测试,结果表明,在锆质量分数0.2%~1.2%,分子筛的中强酸和强酸量随锆质量分数的增加而增大,并向高温方向偏移。丙烯齐聚催化反应的活性评价结果显示,中强酸和强酸的量对Zr/HZSM-5催化性能有显著影响,在反应过程中对链的增长起促进作用。  相似文献   

5.
6.
采用不同方法表征了硅铝比(Si O2/Al2O3)为33、266和487的质子型ZSM-5分子筛,并研究了ZSM-5分子筛作为助催化剂在渣油裂解中的应用.与USY分子筛基催化剂混合后,在固定流化床上,评价了ZSM-5分子筛助催化剂的催化裂化性能.研究发现,提高ZSM-5分子筛硅铝比,可以有效抑制混合催化剂对汽油烯烃的裂解,从而避免了汽油烷烃的大量损失.加入ZSM-5助催化剂后,伴随着液化气(LPG)产率的增加,异丁烷和异戊烷产率增加,这可能是由USY基催化剂和ZSM-5助催化剂的综合效应引起的.汽油烷烃和芳烃含量的变化,引起了汽油辛烷值的增加.高硅铝比ZSM-5分子筛(硅铝比为266和487)不仅可以显著改善汽油的辛烷值,而且有效避免了汽油的大量损失.催化汽油辛烷值的改善主要是由于高硅铝比ZSM-5分子筛具有适宜的芳构化和异构化活性,这些变化主要源于高硅铝比ZSM-5分子筛小的孔道直径和适宜的酸性.  相似文献   

7.
分子筛酸性位位于其亚纳米孔道中,赋予其独特的择型催化特性,在烃类催化转化中有重要应用.但传统分子筛的晶体尺寸通常在微米尺度,因此狭长的孔道结构使得分子与活性位的接触受到扩散限制.通过控制分子筛晶体生长习性,选择性暴露分子筛孔道开口晶面,截短分子筛孔道长度,可以有效解决扩散问题.例如通过控制ZSM-5分子筛沿b轴的生长,合成了具有单晶胞层厚度(2 nm)的二维片层状分子筛,有效的促进了分子扩散、大大提高了其在甲醇转化中的寿命.但这类ZSM-5分子筛的合成需要使用特殊的多头季铵盐模版剂,且一般SiO2/Al2O3比大于100,不利于其实际应用推广.本文开发了一种使用简单有机胺模版剂(TEDA)合成片状垂直交错结构ZSM-5的新方法,并采用电子显微分析对所制ZSM-5分子筛晶体生长方向进行了表征,测试了其催化甲醇制汽油反应性能.结果表明,所得ZSM-5具有良好的结晶性和典型微孔分子筛吸附特征,微孔表面积和微孔体积分别为251 m2/g和0.12cm3/g.电镜结果表明,其晶体结构特征...  相似文献   

8.
ZSM-5分子筛是合成三聚甲醛的有效催化剂。本工作通过XRF、XRD、SEM、NH3-TPD、Py-FTIR和27Al MAS NMR等手段对一系列不同SiO2/Al2O3物质的量比的ZSM-5分子筛催化剂进行了表征,研究了ZSM-5分子筛中BrΦnsted酸中心和Lewis酸中心对其甲醛合成三聚甲醛催化性能的影响。结果表明,SiO2/Al2O3物质的量比为250的ZSM-5分子筛具有合适的BrΦnsted酸中心用于催化甲醛缩聚为三聚甲醛的反应,同时其Lewis酸中心量极少,可有效抑制Cannizzaro或Tishchenko等副反应,提高三聚甲醛的选择性,因而具有最佳的合成三聚甲醛催化性能。寿命实验评价结果显示,SiO2/Al2O3物质的量比为250的ZSM-5分子筛具有良好的催化稳定性,单程寿命长达114 h,并且可通过550℃焙烧再生恢复其催...  相似文献   

9.
以正己烷为模型化合物,通过产物分布分析,探讨HZSM-5分子筛上烷烃酸催化裂解反应路径及机理。研究结果表明,反应温度为300℃,不存在热裂解过程的条件下,只有基于碳正离子机理的酸催化反应。催化剂裂化活性与B酸(Br(o|")nsted acid)量成正相关。由裂解产物的分布特点,其中,丙烯的选择性与催化剂硅铝比和剂油比正相关,而乙烷、乙烯和丙烷的选择性呈负相关性,证实了低酸密度有利于单分子裂解路径的进行。值得注意的是,正己烷直接裂解所得C_4产物的总选择性明显高于C_2产物,结合量化计算,证实正己烷裂解生成的C_2H_5~+碳正离子难以通过氢转移反应生成乙烯和乙烷,而是更倾向于与正己烷分子形成新的碳鎓离子(C_8H_(19)~+,继续发生裂解反应生成更多C_4产物,揭示了轻烃催化裂解产物中乙烯选择性低的理论本质。综上可知,通过改变催化剂酸密度和剂油比,可实现反应路径的控制,从而调控轻烃酸催化裂解产物的选择性。本研究可为石脑油催化裂解催化剂和工艺开发提供重要的理论支撑。  相似文献   

10.
ZSM-5具有较高的催化活性和独特的择形选择性,因而被广泛用于精细化工和石油炼制等工业过程.但其较小的孔道尺寸导致其在反应中尤其在催化过程中的传质受到影响,从而严重影响催化剂寿命.为了解决反应过程中分子筛中底物及产物的扩散限制问题,近年来关于介微孔复合多级孔道分子筛的研究在分子筛合成领域引起了广泛兴趣,并取得一定进展.但直接合成法存在成本及复杂性问题,因此在量产的分子筛上进行后改性引入介孔表现出明显优势.在这一大类处理过程中,碱处理造介孔因成本低以及可操作性较高而备受青睐.但由于脱硅所形成的介孔往往无序,稳定性较差,因此提高其水热稳定性具有重要意义.文献已有较多报道通过磷元素修饰抑制分子筛在水热环境中脱铝,从而提高分子筛骨架稳定性.但传统的磷元素修饰一般采用后续浸渍法,过程繁琐.本课题组开发了一步法后处理制备高水热稳定多级孔ZSM-5分子筛,将脱硅过程与磷引入过程相结合,以四乙基氢氧化磷(TEPOH)为磷源,直接处理微孔分子筛得到含磷的多级孔分子筛.相比于传统的分子筛磷修饰过程,该磷物种在处理中优先交换分子筛骨架上铝原子附近用来平衡电荷的钠离子,从而增加了磷物种与铝物种相互作用的可能性,提高了稳化骨架的效果.基于此,本文利用氮吸附-脱附、元素分析、X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、氨程序升温脱附(NH_3-TPD)以及~(27)Al和~(31)P固体核磁(NMR)等一系列表征技术,证明该一步后处理法对分子筛催化性能的作用.SEM和XRD结果表明,分子筛在进行各种处理前后,相对结晶度和分子筛形貌变化不大,说明大部分微孔得到保留.TEM测试表明,经过该一步后处理法得到的分子筛实现了介孔的引入,介孔孔径在10–20 nm.元素分析结果表明,几乎所有的磷源物质在该过程中被引入到分子筛上,实现了介孔和磷物种的同时引入.NH_3-TPD测试表明,含磷分子筛在老化前后较无磷分子筛具有更高的酸性位密度保留度,说明磷元素对分子筛上的酸性位起到了稳化作用.孔结构特性数据不仅说明了脱硅过程中成功引入介孔,而且含磷分子筛老化前后的介孔特性数据保留度明显高于无磷样品,实现了磷元素对介孔结构的稳化作用.27Al和31P NMR结果从理论上证明了该样品上磷元素对抑制骨架脱铝的稳化效应,证实了分子筛在处理后水热稳定性的提高.基于前期的研究工作,本文完善了磷元素对分子筛稳化作用的机理过程.TEPBr在水热活化过程中转变成磷酸盐,并修饰分子筛的骨架铝以及部分难以避免的非骨架铝.该过程中形成的磷铝物种在后续的水热老化过程中进一步修饰分子筛骨架铝,使骨架铝得到稳化.而在脱硅过程中存在的"反插铝"过程往往使大部分骨架铝位于介孔孔道中,磷元素与铝元素的相互作用同时也对介孔进行了稳化.通过正辛烯和1,3,5-三异丙苯的裂化测试发现,处理后的分子筛由于其优化后的孔道性能和酸性性质,大大提高了底物分子的转化率以及其自身的容碳能力,从而延长了催化寿命.  相似文献   

11.
分子筛结构的独特性和多样性使其在催化、吸附分离和离子交换等领域有着广泛应用.近年来,纳米分子筛制备和应用受到极大关注.与传统微米分子筛相比,纳米分子筛具有较小的晶粒尺寸、较大的外表面积和较高的表面活性,能显著提高其分离和催化性能.制备纳米晶体的常用方法有过量模板法、空间限定法、晶种法、离子热合成法及微反应器合成法等.目前,已合成出多种拓扑结构的纳米分子筛,包括FAU,MFI,MEL和CHA等.ZSM-22是一种具有TON拓扑结构的一维十元环直孔道分子筛(孔口尺寸为0.45nm×0.55nm),在长链烷烃异构化和烯烃异构化等反应中表现出优异的催化活性.水热合成法是制备ZSM-22分子筛最常用的方法,所得样品晶粒尺寸为2–15μm,但由于ZSM-22分子筛是一种亚稳态结构,为了防止杂晶生成,合成通常是在剧烈搅拌(通常大于400r/min)下进行.目前已有报道在较低转速下合成ZSM-22分子筛,但产物仍为微米晶体;或在微波辅助水热合成条件下合成亚微米ZSM-22分子筛,但晶体尺寸不可调且合成过程需要较高功率的微波反应器.因此,在水热条件下合成纯纳米ZSM-22分子筛仍然是一个巨大挑战.本文在上述研究基础上采用改进的水热合成法成功合成出纳米ZSM-22分子筛,考察了转速﹑硅铝比及乙醇共溶剂对晶粒尺寸的影响,比较了纳米和常规微米ZSM-22分子筛的甲醇转化反应性能.结果表明,采用改进的水热合成法能够在较低转速下合成出纳米ZSM-22分子筛,晶体尺寸在150–800nm范围可调.通过考察转速对晶粒尺寸的影响,发现静态合成条件下无法形成ZSM-22分子筛,表明ZSM-22分子筛合成需要一定的转速.转速在10–50r/min变化时,可以合成出不同晶体尺寸的ZSM-22分子筛,且随转速提高,ZSM-22分子筛晶体尺寸先减小后增大,表明纳米ZSM-22分子筛合成存在最佳转速.另外,配料硅铝比能显著影响ZSM-22分子筛晶体尺寸,随配料硅铝比增加,ZSM-22分子筛晶体尺寸先减小后增大.通过在合成体系中添加乙醇作为共溶剂,考察了有机溶剂对ZSM-22分子筛晶粒尺寸的影响,发现有机溶剂能显著增大ZSM-22的晶体尺寸.将本文合成的纳米和常规微米ZSM-22分子筛用于甲醇转化反应,考察了晶体尺寸对ZSM-22分子筛甲醇转化反应性能的影响.发现与常规微米ZSM-22分子筛相比,纳米ZSM-22分子筛催化剂寿命显著提高,说明晶粒尺寸减小能有效减缓积碳导致的分子筛失活;同时,反应产物中乙烯和芳烃选择性有所提高,这是由于外表面积增大所致.此外,还考察了不同硅铝比ZSM-22分子筛的甲醇转化反应性能.结果表明,分子筛硅铝比会影响催化剂寿命,但晶体尺寸对催化剂寿命影响更大.ZSM-22分子筛硅铝比增大有助于提高低碳烯烃选择性,减少芳烃生成.  相似文献   

12.
以TBA~+为模板剂在六种不同的体系中合成了ZSM-5和ZSM-11分子筛。考察了反应混合物中Al_2O_3含量对产物中ZSM-5和ZSM-11分子筛的相对含量及其晶化速度的影响。在此基础上,提出了ZSM-5和ZSM-11分子筛三维骨架的形成步骤,较好地解释了实验现象。  相似文献   

13.
对沸石分子筛而言,分子筛的孔道、孔径、孔容和微孔等物理性质和酸性影响它的活性.通过调节和控制以上物理性质能够提高产物选择性和收率,降低副产物,从而促进反应性能提高活性.我们考察了ZSM-5分子筛的晶粒度和硅铝比对合成气羰基化反应性能的影响.结果表明,晶粒度小及具有一定比例的中强酸中心的ZSM-5沸石分子筛对反应有利,但晶粒度比较大即1和3μm的ZSM-5沸石分子筛目标产物选择性比较低.纳米级的ZSM-5沸石分子筛催化剂在反应中表现出较高的活性及较低的副产物选择性,是适宜的合成气羰基化反应催化剂载体.温度考察结果可知,反应温度为300℃时,效果为最佳.其中, 30~50 nm的ZSM-5沸石分子筛催化剂CO转化率为55%,乙酸甲酯和甲酸甲酯选择性之和为52%,而晶粒度3μm时, CO转化率仅为25%,乙酸甲酯和甲酸甲酯选择性之和为20%,是30~50 nm沸石分子筛的一半.当反应继续升温时,副产物的选择性也随之增加,是因为所生成的中间产物和甲醇等继续进行各种反应生成二甲醚、芳烃、烷烃以及裂解生成CO_2等干气.  相似文献   

14.
刘百军  曾贤君 《物理化学学报》2009,25(10):2055-2060
以ZSM-5/ZSM-57复合分子筛为催化剂, 考察了其对混合C4烃催化转化的反应性能. 采用氨程序升温脱附(NH3-TPD)和吡啶吸附傅立叶变换红外(FT-IR)光谱技术表征复合分子筛的酸性质. 结果表明, 当复合分子筛中ZSM-5的含量较低时, 比ZSM-5具有更高的催化活性及乙烯和丙烯选择性, 这是因为此时复合分子筛酸强度较高、酸量较多, 且小孔ZSM-57有利于乙烯和丙烯的择形反应. 而当复合分子筛中ZSM-5的含量较高时, 具有较高的苯和甲苯选择性, 其原因可能是其孔结构及共晶生长时的结构匹配性对芳构化反应有利.  相似文献   

15.
以四丙基氢氧化铵(TPAOH)为单一模板剂,采用低温老化、高温晶化2段变温法合成出了球状多级孔ZSM-5分子筛。利用XRD、FT-IR、NH_3-TPD、SEM、TEM以及氮气吸-脱附等测试对合成样品进行了表征。结果表明:直径约为2μm左右的球状多级孔ZSM-5分子筛颗粒内的晶间介孔和大孔主要由棒状纳米晶堆积而成的,该产品具有较大的比表面积和介孔孔容。同常规水热法一步合成的微孔ZSM-5分子筛相比,2段变温法合成的多级孔ZSM-5分子筛具有更高的B酸/L酸比例(C_(BP)/C_(LP))、强酸/弱酸比例(C_s/C_w)以及活性位可接近性指数(ACI)。催化裂化评价结果显示,得益于活性位可接近性指数等指标的提高,球状多级孔ZSM-5分子筛比常规合成的微孔ZSM-5分子筛具有更高的转化率和丙烯收率等优异的催化性能。  相似文献   

16.
采用水热合成法合成了不同粒径的ZSM-5分子筛催化剂,系统考察了分子筛粒径变化对苯与甲醇烷基化反应的影响。研究结果表明,随着ZSM-5分子筛粒径增大,不但苯的转化率和二甲苯选择性降低,而且催化剂稳定性明显下降。其中,粒径为0.25 μm的ZSM-5分子筛在苯烷基化反应中的催化性能最佳,且催化剂稳定性最好。另外,采用拉曼光谱和热重等方法对催化剂积碳物种和失活机理进行了深入研究,发现催化剂失活主要是由于反应过程中生成的大分子稠环芳烃堵塞了分子筛孔道并覆盖活性位点造成的。最后,考察了反应温度、原料组成及空速对苯烷基化反应的影响并优化出最佳的苯烷基化反应条件。  相似文献   

17.
采用两步水热晶化法,通过在合成体系中加入硼酸、氟化铵、氟硼酸铵,合成出了硼和氟改性的ZSM-5分子筛。利用X射线衍射、氮气吸附-脱附、~(29)Si固体核磁共振波谱、傅里叶变换红外光谱、扫描电子显微镜以及NH3程序升温脱附等测试手段对样品进行了表征。结果表明:硼和氟掺杂条件下可以合成具有较高结晶度的ZSM-5分子筛,杂原子掺杂提高了分子筛的硅铝比;硼和氟掺杂可以显著降低ZSM-5分子筛的Lewis酸量,但提高了Br?nsted酸量;硼和氟共同作用可以降低ZSM-5分子筛的颗粒尺寸。甲醇制丙烯评价结果显示:较低的Lewis酸量和适宜的Br?nsted酸性有利于提高丙烯选择性和催化剂寿命;NH_4BF_4改性的ZSM-5分子筛(Z5-BF2)表现出较高的丙烯选择性和较长的催化剂寿命。  相似文献   

18.
丙烯酸及其酯是重要的化工原料,广泛应用于涂料、粘结剂、纤维等领域,目前工业上常采用丙烯两段氧化法进行制备.然而该方法以石油基原料丙烯为源头,采用V/Mo/Bi等金属催化剂,不符合可持续发展理念,且存在环境污染及氧气下产物易过度氧化等问题.因此,如何高效、安全、大规模工业化制备丙烯酸及其酯是研究者追求的目标.以乙酸甲酯(MAc)和甲醛为原料,通过羟醛缩合一步制备丙烯酸及其酯是一条完全不同于丙烯氧化法的合成路径,原料均可由煤基甲醇得到,符合我国富煤、贫油、少气的基本能源结构,且该方法碳原子利用率为100%,副产物仅为水,属于绿色环保合成路径.羟醛缩合是典型的碳链增长反应,可在酸性催化剂、碱性催化剂、以及酸碱双功能催化剂存在下发生.碱性催化剂一般为负载型碱金属氧化物,例如以SiO_2为载体的负载型Na,K,Cs氧化物催化剂等,但都存在活性组分流失的问题,进而导致催化剂的失活,难以实现工业化.酸碱双功能催化剂是目前研究的热点,由于具有酸催化剂的高选择性和碱催化剂的高活性,其反应性能要远优于单一酸性催化剂和单一碱性催化剂,广大研究者对此进行了深入广泛的研究,目前基本处于实验室阶段.相对而言,目前酸性催化剂上通过羟醛缩合反应制备丙烯酸及其酯的研究工作较少,特别是以固体酸为催化剂进行乙酸甲酯和甲醛气固相反应研究非常少见.我们以甲缩醛为甲醛源,创新性地采用固体硅铝分子筛为酸性催化剂,催化甲缩醛(DMM)和MAc发生羟醛缩合反应来制备丙烯酸.硅铝分子筛具有较高的活性,可高效地催化羟醛缩合反应,且由于分子筛催化剂具有很好的再生性能,即使催化剂寿命较短,也可采用流化床或移动床等反应器进行工业化,因此存在良好的工业化前景.为了进一步深入研究酸性位和碱性位各自对DMM和MAc羟醛缩合反应的影响,本文以HZSM-35分子筛为载体,采用浸渍法制备不同碱金属铯氧化物含量的催化剂,利用氮气吸附/脱附方法和化学程序升温(NH_3-TPD)方法对其孔结构和酸性质进行表征,并进一步考察催化剂的性能.结果表明,微孔体积随着碱金属Cs负载量的增加而逐渐减小,当Cs负载量增加至10 wt%时,样品微孔体积从初始0.105 cm~3/g降至0.063 cm~3/g.NH_3-TPD结果显示,当Cs负载量为1 wt%,酸性催化剂载体上的强酸和弱酸活性位被大量碱性氧化物占据;当负载量超过5 wt%时,所有的酸性位均被覆盖.随后考察负载不同碱金属含量分子筛的羟醛缩合反应性能,发现碱金属氧化物的引入不利于羟醛缩合反应的进行,这主要是由于作为甲醛源的DMM只有在酸中心上才能进行分解产生甲醛,促使羟醛缩合反应顺利进行.当采用DMM为甲醛源时,体系中必须有酸性位存在.同时得知,分子筛HZSM-35中强酸和弱酸均是羟醛缩合反应的有效酸性位,但强酸同时催化原料发生类甲醇制烯烃过程,致使大量烃类副产物生成,产生较重的积炭物种.羟醛缩合反应在含有大量弱酸催化剂上(如γ-Al2O3)也可顺利进行,且具有较高的活性和稳定性.  相似文献   

19.
B酸型分子筛和分子筛型材料是乙烯转化为高级烯烃的潜在催化剂.本文在C3-C5烯烃形成热力学优于高碳氢化合物的条件下(673-823 K, 1 atm),研究了两种具有AFI结构但酸强度不同的H-SAPO-5和H-SSZ-24催化剂上乙烯、顺式-2-丁烯和乙烯-丁烯混合物的转化反应.乙烯和顺式-2-丁烯分压分别在9-60和0.9-8.1 kpa范围内变化,接触时间分别在3.78-756和0.573-76.4 s.μmol H~+/cm~3范围内变化.在用于计算速率常数的条件范围内,乙烯转化率小于1%,丁烯转化率小于10%.在酸性较强的H-SSZ-24上乙烯转化率比H-SAPO-5高一个数量级(748 K时为6.5对0.3 mmol/mol H+.S,戊烯=33KPa),乙烯中相应的反应级数较低(673 K时为1.5对2.0),表观活化能较低(698-823 K时52对80 k J/mol).两种催化剂上顺式-2-丁烯转化率以及乙烯和顺式-2-丁烯共进料的表观反应速率存在相似的差异.然而,顺式-2-丁烯转化为C3-C5烯烃受热力学限制的影响很大,妨碍了详细的动力学分析,并导致在最高温度下主要生成异丁烯.  相似文献   

20.
近年来,随着一次能源过度消耗所带来的能源和环境问题日益突出,开发廉价、可持续的清洁能源备受关注.光催化分解水制氢可利用太阳能普遍率高和几乎免费等特点制取燃烧热值高、燃烧产物无污染的氢气能源.自从1972年日本的Fujishima教授和Honda教授首次发现TiO2单晶电极光催化分解水可以产生氢气以来,光催化制氢被认为是实现可持续制氢最有潜力的方法之一.有效地将太阳能转换为化学能的关键是设计高效的电荷分离和运输结构.然而,现有的大多数半导体光催化剂因缺少活性位点、光生载流子易复合等缺点而无法达到较高的转换效率.因此,如何提高半导体光催化产氢的转换效率是现阶段面对的重要问题.在众多解决方法中,助催化剂的引入可以为光催化制氢反应增加活性位点,促进光生载流子的有效分离,进而有效地提高半导体光催化产氢速率.本文总结了多种不同类型的助催化剂应用于光催化产氢研究的最新进展,详细讨论了助催化剂在增强光吸收、提供活性位点、增加催化剂稳定性和促进电荷分离等方面的作用,阐明了助催化剂在光催化分解水制氢中的反应机理,同时还提出了光催化制氢的未来研究和预测.本文将助催化剂分为以下几种类别进...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号