首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The DNA binding abilities of peptide nucleic acids (PNAs), both achiral and bearing three adjacent D-lysine-based monomers in the middle of the strand ("chiral box" PNA), were studied by means of electrospray mass spectrometry (ESI-MS). In contrast with achiral PNA, "Chiral box" PNA was confirmed to exert high direction control (antiparallel vs. parallel DNA target) in DNA binding.  相似文献   

2.
The ‘fully protected backbone’ (FPB) strategy has been efficiently adapted to the solid-phase synthesis of homothymine, homocytosine and ‘mixed’ pyrimidine PNAs. This versatile and simple method avoids the preparation of PNA monomers and relies on easy available starting materials, highly efficient backbone elongations and effective nucleobase units condensations.  相似文献   

3.
The synthesis of new chiral PNA analogues based on lysine is reported. In particular, l- and/or d-lysine-based PNA submonomers bearing two lysine side chains exactly spaced as in the dipeptide Lys-Lys were synthesized and incorporated in the middle of decameric PNA strands, obtaining four diastereomeric (LD, DL, LL and DD) lysine-based chiral PNAs. The hybridization with their complementary antiparallel DNA strand was studied by melting temperature determination and compared with the analogue achiral PNA and chiral PNAs bearing one residue with either of the two lysine enantiomers. The binding abilities were shown to be strongly dependent on the configuration of the stereogenic centres.  相似文献   

4.
[structures: see text] A serious drawback of peptide nucleic acids (PNAs) from an application perspective that has not been adequately dealt with is nondiscrimination of identical DNA and RNA sequences. An analysis of the available X-ray and NMR solution structures of PNA complexes with DNA and RNA suggested that it might be possible to rationally impart DNA/RNA duplex binding selectivity by tuning the dihedral angle beta of the flexible ethylenediamine part of the PNA backbone (II) via suitable chemical modifications. Cyclohexanyl PNAs (chPNAs) with beta approximately = 65 degrees were designed on the basis of this rationale. The chPNAs introduced remarkable differences in duplex stabilities among their DNA and RNA complexes, with melting temperatures (deltaTm(RNA-DNA) = +16-50 degrees C) depending on the number of modifications and the stereochemistry. This is a highly significant, exceptional binding selectivity of a mix sequence of PNA to RNA over the same DNA sequence as that seen to date. In contrast, cyclopentanyl PNAs (cpPNAs) with beta approximately = 25 degrees hybridize to DNA/RNA strongly without discrimination because of the ring puckering of the cyclopentane ring. The high affinity of chPNAs to bind to RNA without losing base specificity will have immediate implications in designing improved PNAs for therapeutic and diagnostic applications.  相似文献   

5.
Conformationally constrained cis-aminocyclohexylglycyl PNAs have been designed on the basis of stereospecific imposition of 1,2-cis-cyclohexyl moieties on the aminoethyl segment of aminoethylglycyl PNA (aegPNA). The introduction of the cis-cyclohexyl ring may allow the restriction of the torsion angle beta in the ethylenediamine segment to 60-70 degrees that is prevalent in PNA(2):DNA and PNA:RNA complexes. The synthesis of the optically pure monomers (10a and 10b) is achieved by stereoselective enzymatic hydrolysis of an intermediate ester 2. The chiral PNA oligomers were synthesized with (1S,2R/1R,2S)-aminocyclohexylglycyl thymine monomers in the center and N-terminus of aegPNA. Differential gel shift retardation with one or more units of modified monomer units was observed as a result of hybridization of PNA sequences with complementary DNA sequences. Hybridization studies with complementary DNA and RNA sequences using UV-T(m) measurements indicate that PNA with (1S,2R)-cyclohexyl stereochemistry enhances selective binding with RNA over DNA as compared to control aegPNA and PNA with the other (1R,2S) isomer.  相似文献   

6.
T. Govindaraju 《Tetrahedron》2006,62(10):2321-2330
Synthesis of cationic, chiral PNA analogues with an extra atom in the backbone (bepPNA) is reported. The (2S,4S) geometry of the pyrrolidine ring, and an additional carbon atom in the backbone of homopyrimidine-bepPNAs resulted in the optimization of the inter-nucleobase distance, such that selective binding to complementary RNA over DNA was observed in the triplex mode. It was evident from circular dichroism studies that oligomers with mixed aminoethylglycyl-bep (aeg-bep) repeating units, and also bepPNA with homogeneous backbone attained structures quite different from those of aegPNA2:RNA/DNA complexes. The bepPNA, when incorporated in a duplex forming mixed purine-pyrimidine sequence, also showed a preference for binding complementary RNA over DNA.  相似文献   

7.
Peptide nucleic acids (PNAs) are non-natural nucleic acid mimics that bind to complementary DNA and RNA with high affinity and selectivity. PNA can bind to nucleic acids in a number of different ways. Currently, the formation of PNA-oligonucleotide duplex, triplex, and quadruplex structures have been reported. PNAs have been used in numerous biomedicial applications, but there are few strategies to predictably improve the binding properties of PNAs by backbone modification. We have been studying the benefits of incorporating (S,S)-trans-cyclopentane diamine units (tcyp) into the PNA backbone. In this Communication, we report the improvement in stability associated with tcyp incorporation into PNA-DNA duplexes, triplexes, and quadruplexes. The broad utility of this modification across multiple types of PNA structures is unique and should prove useful in the development of applications that rely on PNA.  相似文献   

8.
[structure: see text] Peptide nucleic acid (PNA) monomers containing the tricyclic cytosine analogues phenoxazine, 9-(2-aminoethoxy)phenoxazine (G-clamp), and 9-(3-aminopropoxy)phenoxazine (propyl-G-clamp) have been synthesized. The modified nucleobases were incorporated into PNA oligomers using Boc-chemistry for solid-phase synthesis. PNAs containing single G-clamp modifications exhibit significantly enhanced affinity toward RNA and DNA targets relative to unmodified PNA while maintaining mismatch discrimination. These PNA G-clamp modifications exhibit the highest increase in affinity toward nucleic acid targets reported so far for PNA modifications.  相似文献   

9.
The development of new RNA-binding ligands is attracting increasing interest in fundamental science and the pharmaceutical industry. The goal of this study was to improve the RNA binding properties of triplex-forming peptide nucleic acids (PNAs) by further increasing the pKa of 2-aminopyridine ( M ). Protonation of M was the key for enabling triplex formation at physiological pH in earlier studies. Substitution on M by an electron-donating 4-methoxy substituent resulted in slight destabilization of the PNA–dsRNA triplex, contrary to the expected stabilization due to more favorable protonation. To explain this unexpected result, the first NMR structural studies were performed on an M -modified PNA–dsRNA triplex which, combined with computational modeling identified unfavorable steric and electrostatic repulsion between the 4-methoxy group of M and the oxygen of the carbonyl group connecting the adjacent nucleobase to PNA backbone. The structural studies also provided insights into hydrogen-bonding interactions that might be responsible for the high affinity and unusual RNA-binding preference of PNAs.  相似文献   

10.
Peptide nucleic acids (PNA) with extended isoorotamide containing nucleobases ( I o ) were designed for binding A–U base pairs in double-stranded RNA. Isothermal titration calorimetry and UV thermal melting experiments revealed improved affinity for A–U using the Io scaffold in PNA. PNAs having four sequential Io extended nucleobases maintained high binding affinity.  相似文献   

11.
Polymorphic DNA G‐quadruplex recognition has attracted great interest in recent years. The strong binding affinity and potential enantioselectivity of chiral [Ru(bpy)2(L)]2+ (L=dipyrido[3,2‐a:2′,3′‐c]phenazine, dppz‐10,11‐imidazolone; bpy=2,2′‐bipyridine) prompted this investigation as to whether the two enantiomers, Δ and Λ, can show different effects on diverse structures with a range of parallel, antiparallel and mixed parallel/antiparallel G‐quadruplexes. These studies provide a striking example of chiral‐selective recognition of DNA G‐quadruplexes. As for antiparallel (tel‐Na+) basket G‐quadruplex, the Λ enantiomers bind stronger than the Δ enantiomers. Moreover, the behavior reported here for both enantiomers stands in sharp contrast to B‐DNA binding. The chiral selectivity toward mixed parallel/antiparallel (tel‐K+) G‐quadruplex of both compounds is weak. Different loop arrangements can change chiral complex selectivity for both antiparallel and mixed parallel/antiparallel G‐quadruplex. Whereas both Δ and Λ isomers bind to parallel G‐quadruplexes with comparable affinity, no appreciable stereoselective G‐quadruplex binding of the isomers was observed. In addition, different binding stoichiometries and binding modes for Δ and Λ enantiomers were confirmed. The results presented here indicate that chiral selective G‐quadruplex binding is not only related to G‐quadruplex topology, but also to the sequence and the loop constitution.  相似文献   

12.
Developed in the early 1990s, peptide nucleic acid (PNA) has emerged as a promising class of nucleic acid mimic because of its strong binding affinity and sequence selectivity toward DNA and RNA and resistance to enzymatic degradation by proteases and nucleases; however, the main drawbacks, as compared to other classes of oligonucleotides, are water solubility and biocompatibility. Herein we show that installation of a relatively small, hydrophilic (R)-diethylene glycol ("miniPEG", R-MP) unit at the γ-backbone transforms a randomly folded PNA into a right-handed helix. Synthesis of optically pure (R-MP)γPNA monomers is described, which can be accomplished in a few simple steps from a commercially available and relatively cheap Boc-l-serine. Once synthesized, (R-MP)γPNA oligomers are preorganized into a right-handed helix, hybridize to DNA and RNA with greater affinity and sequence selectivity, and are more water soluble and less aggregating than the parental PNA oligomers. The results presented herein have important implications for the future design and application of PNA in biology, biotechnology, and medicine, as well as in other disciplines, including drug discovery and molecular engineering.  相似文献   

13.
The automated on‐line synthesis of DNA‐3′‐PNA chimeras 1 – 4 and (2′‐O‐methyl‐RNA)‐3′‐PNA chimeras 5 – 8 is described, in which the 3′‐terminal part of the oligonucleotide is linked to the N‐terminal part of the PNA via N‐(ω‐hydroxyalkyl)‐N‐[(thymin‐1‐yl)acetyl]glycine units (alkyl=Et, Ph, Bu, and pentyl). By means of UV thermal denaturation, the binding affinities of all chimeras were directly compared by determining their Tm values in the duplex with complementary DNA and RNA. All investigated DNA‐3′‐PNA chimeras and (2′‐O‐methyl‐RNA)‐3′‐PNA chimeras form more‐stable duplexes with complementary DNA and RNA than the corresponding unmodified DNA. Interestingly, a N‐(3‐hydroxypropyl)glycine linker resulted in the highest binding affinity for DNA‐3′‐PNA chimeras, whereas the (2′‐O‐methyl‐RNA)‐3′‐PNA chimeras showed optimal binding with the homologous N‐(4‐hydroxybutyl)glycine linker. The duplexes of (2′‐O‐methyl‐RNA)‐3′‐PNA chimeras and RNA were significantly more stable than those containing the corresponding DNA‐3′‐PNA chimeras. Surprisingly, we found that the charged (2′‐O‐methyl‐RNA)‐3′‐PNA chimera with a N‐(4‐hydroxybutyl)glycine‐based unit at the junction to the PNA part shows the same binding affinity to RNA as uncharged PNA. Potential applications of (2′‐O‐methyl‐RNA)‐3′‐PNA chimeras include their use as antisense agents acting by a RNase‐independent mechanism of action, a prerequisite for antisense‐oligonucleotide‐mediated correction of aberrant splicing of pre‐mRNA.  相似文献   

14.
Conformationally constrained chiral PNA analogues were designed on the basis of stereospecific imposition of a 1,2-cis-cyclopentyl moiety on an aminoethyl segment of aegPNA. It is known that the cyclopentane ring is a relatively flexible system in which the characteristic puckering dictates the pseudoaxial/pseudoequatorial dispositions of substituents. Hence, favorable torsional adjustments are possible to attain the necessary hybridization-competent conformations when the moiety is imposed on the conventional PNA backbone. The synthesis of the enantiomerically pure 1,2-cis-cyclopentyl PNA monomers (10a and 10b) was achieved by stereoselective enzymatic hydrolysis of a key intermediate ester 2. The chiral (1S,2R/1R,2S)-aminocyclopentylglycyl thymine monomers were incorporated into PNA oligomers at defined positions and through the entire sequence. Hybridization studies with complementary DNA and RNA sequences using UV-Tm measurements indicate that aeg-cpPNA chimera form thermally more stable complexes than aegPNA with stereochemistry-dependent selective binding of cDNA/RNA. Differential gel shift retardation was observed on hybridization of aeg-cpPNAs with complementary DNA.  相似文献   

15.
Peptide nucleic acids (PNAs) are oligonucleotide mimics widely used as antisense, antigene molecules, and biotechnological tools. Recently, several microarrays and other biosensors based on PNAs have been developed. The construction of PNA molecular beacons or light-up probes for DNA detection requires the labelling of the PNA moiety. Labels are usually attached at the C or N terminal end by a flexible linker or in the middle of a PNA sequence, substituting one PNA base with an artificial base or by attaching fluorophores to a modified PNA backbone. The need to develop simple protocols to label PNAs encouraged us to design a new procedure for the synthesis of γ-mercaptomethyl-modified PNA. Here we propose a new strategy for the synthesis of modified PNAs, bearing amino acid side chains. The synthesis is straightforward and is an improvement to the procedures reported so far, as it uses stable intermediates and proceeds with better yields.  相似文献   

16.
以R,S-1,1′-2-联萘酚对映体为手性客体分子, 采用荧光探针法详细研究了各种醇对β-环糊精/(R或S)-1,1′-2-联萘酚对映体的手性包络和手性荧光猝灭等性质的影响, 结果表明, 醇的存在可显著影响R,S-1,1′-2-联萘酚对映体与β-环糊精形成包络物的包络形式和包络常数. 通过与该对映体的β-环糊精手性固定相高效液相色谱拆分法比较研究结果表明, 醇等第三客体分子可显著影响环糊精对对映体化合物的手性选择性和分离度.  相似文献   

17.
Compounds that bind specifically to double‐stranded regions of RNA have potential as regulators of structure‐based RNA function; however, sequence‐selective recognition of double‐stranded RNA is challenging. The modification of peptide nucleic acid (PNA) with unnatural nucleobases enables the formation of PNA–RNA triplexes. Herein, we demonstrate that a 9‐mer PNA forms a sequence‐specific PNA–RNA triplex with a dissociation constant of less than 1 nm at physiological pH. The triplex formed within the 5′ untranslated region of an mRNA reduces the protein expression levels both in vitro and in cells. A single triplet mismatch destabilizes the complex, and in this case, no translation suppression is observed. The triplex‐forming PNAs are unique and potent compounds that hold promise as inhibitors of cellular functions that are controlled by double‐stranded RNAs, such as RNA interference, RNA editing, and RNA localization mediated by protein–RNA interactions.  相似文献   

18.
Aromatic peptide nucleic acid (APNA) monomers containing N-(2-aminobenzyl)-glycine, N-(2-aminobenzyl)-(R)- or -(S)-alanine, and N-(2-aminobenzyl)-beta-alanine moieties as part of their backbone were synthesized. These novel analogues were incorporated as a single "point mutation" in PNA hexamers, and their physicochemical properties were investigated by UV thermal denaturation and CD experiments. Destabilization in triplex formation between the PNA-APNA chimeras and complementary DNA or RNA oligomers was observed, as compared to the PNA control. The APNA monomer composed of the N-(2-aminobenzyl)-glycine backbone led to the smallest decrease in the thermal stability of the triplexes formed with DNA and RNA, while maintaining selectivity for base-pairing recognition. Since the PNA-APNA chimeras are more lipophilic than the corresponding PNA homopolymers, these oligomers may also exhibit better cell membrane permeability properties.  相似文献   

19.
Chiral molecular recognition of DNA is important for rational drug design and for developing structural probes of DNA conformation. Developing a convenient and inexpensive assay for sensitive and selective identification of DNA‐specific binding compounds with rapid, easy manipulation is in ever‐increasing demand. Here, we present a “turn‐on” and label‐free electrochemiluminescent (ECL) biosensor for distinguishing chiral metallosupramolecular complexes based on DNA three‐way junction formation selectively induced by the analyte. The fabricated ECL sensor shows excellent performance in the chiral discrimination of two enantiomers with an enantioselective recognition ratio of up to 4.4. More importantly, as a “turn‐on” detection system, the ECL chiral sensor does not suffer from false positives and limited signal range of “signal‐off” systems. Therefore, this concept may provide a new insight into the design of efficient sensors for distinguishing chiral molecules and for investigating the interactions between DNA and small molecules.  相似文献   

20.
A broad series of homochiral perylene bisimide (PBI) dyes were synthesized that are appended with amino acids and cationic side chains at the imide positions. Self‐assembly behavior of these ionic PBIs has been studied in aqueous media by UV/Vis spectroscopy, revealing formation of excitonically coupled H‐type aggregates. The interactions of these ionic PBIs with different ds‐DNA and ds‐RNA have been explored by thermal denaturation, fluorimetric titration and circular dichroism (CD) experiments. These PBIs strongly stabilized ds‐DNA/RNA against thermal denaturation as revealed by high melting temperatures of the formed PBI/polynucleotide complexes. Fluorimetric titrations showed that these PBIs bind to ds‐DNA/RNA with high binding constants depending on the number of the positive charges in the side chains. Thus, spermine‐containing PBIs with six positive charges each showed higher binding constants (logKs=9.2–9.8) than their dioxa analogues (logKs=6.5–7.9) having two positive charges each. Induced circular dichroism (ICD) of PBI assemblies created within DNA/RNA grooves was observed. These ICD profiles are strongly dependent on the steric demand of the chiral substituents of the amino acid units and the secondary structure of the DNA or RNA. The observed ICD effects can be explained by non‐covalent binding of excitonically coupled PBI dimer aggregates into the minor groove of DNA and major groove of RNA which is further supported by molecular modeling studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号