首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Effects of the oxygen partial pressure on pulsed-laser deposition of MgO buffer layers on silicon substrates were investigated. The overall growth process was monitored in situ by reflection high-energy electron diffraction (RHEED) method. It was found that the crystallinity and surface morphology of the MgO films were strongly affected by oxygen partial pressure in the deposition chamber. The oxygen-pressure dependence could be explained in terms of interactions of oxygen with species in the plume-like plasma. The MgO film obtained at an optimal oxygen-pressure range of 1×10−2–1 Pa exhibited an atomic-smooth and defect-free surface (the root-mean-square roughness being as low as 0.82 nm). For the metal–insulator–metal (MIM) structure of Au/MgO (150 nm)/TiN prepared at the optimal growth conditions achieved a very low leak current density of 10−7 A cm−2 at an electric field of 8×105 V cm−1 and the permittivity (εr) of about 10.6, virtually the same as that of the bulk MgO single crystals.  相似文献   

2.
The diffusion of Vanadium has been studied in V-doped GaAs layers (GaAs:V) grown by Metal-Organic Chemical Vapour Deposition (MOCVD) using secondary ion mass spectroscopy (SIMS). The vanadium (V) concentration profiles of sandwiched structures made of alternatively undoped and V doped GaAs layers have shown a concentration independent diffusion coefficient (DV) for varying V doping levels from 1018 to 1019 cm−3. Measurements of DV at 550, 615 and 680 °C indicate that the temperature dependence of DV can be represented by the Arrhenius equation:  cm2 s−1. It is suggested that V diffuses via interstitial sites.  相似文献   

3.
Indium phosphide, gallium arsenide phosphide, and aluminum indium phosphide have been deposited by metalorganic vapor-phase epitaxy using tertiarybutylphosphine and tertiarybutylarsine. The effects of growth temperature and V/III ratio on the amount of silicon, sulfur, carbon, and oxygen in InP have been determined. Minimum incorporation was observed at 565 °C and a V/III ratio of 32. In this case, the material contained a background carrier concentration of 2.7×1014 cm−3, and the Hall mobilities were 4970 and 135,000 cm2/V s at 300 and 77 K. The oxygen contamination in AlInP was found to be only 9.0×1015 cm−3 for deposition at 650 °C and a V/III ratio of 35. The relative distribution of arsenic to phosphorus in GaAsyP1−y was determined at temperatures between 525 and 575 °C. The distribution coefficient [(NAs/NP)film/(PTBAs/PTBP)gas] ranged from 25.4 to 8.4, and exhibited an Arrhenius relationship with an apparent activation energy of 1.2 eV.  相似文献   

4.
We have investigated the cross-contamination of As in GaSb/InAs superlattices. We demonstrate a method of varying the lattice constant of the superlattice. By controlling the As background pressure in the growth chamber, the strain can be controlled to about 0.01%, corresponding to As cross-incorporation variations of about ±1%. The distribution of As is investigated by X-ray diffraction and cross-sectional scanning tunneling microscopy, and the critical thickness is obtained.  相似文献   

5.
Nanocrystalline hydroxyapatite [HA, Ca10(PO4)6(OH)2] powders were synthesized by the mechanochemical–hydrothermal method using emulsion systems consisting of aqueous phase, petroleum ether (PE) as the oil phase and biodegradable Tomadol 23–6.5 as the nonionic surfactant. (NH4)2HPO4 and Ca(NO3)2 or Ca(OH)2 were used as the phosphorus and calcium sources, respectively. The calcium source and emulsion composition had significant effects on the stoichiometry, crystallinity, thermal stability, particle size and morphology of final products. Disperse HA crystals with a 160 nm length and aspect ratio of ca. 6 were formed in an emulsion system containing 10 wt% PE, 60 wt% water and 30 wt% surfactant. The HA particles had needle morphology with a specific surface area of . With this technique, HA nanopowders with specific surface areas in the range of 72– were produced.  相似文献   

6.
Boron-doped silicon single crystals of 207 mm diameter with various growing conditions are grown from a large amount of the melt in the cusp-magnetic Czochralski method, and the effects of growing parameters on dopant concentrations in the crystals are experimentally investigated. Equilibrium distribution coefficient of boron calculated by BPS model is 0.716. With the crystal rotation (ω) of 13 rpm and the crucible rotation of , the effective distribution coefficient (ke) is 0.751 in zero magnetic strength and increases up to 0.78 in the magnetic strength of 640 G. For , there is no significant influence of ω on ke. With , ke is almost unity. The experimental results are compared with theory.  相似文献   

7.
A diffusive capture reaction of dopant atoms by relevant host atoms, via the Rideal–Eley mechanism, in GaAs grown by organometallic vapor-phase epitaxy is shown to result in the dopant concentration in the crystal acquiring a dependence on pGa (which is proportional to the growth rate) in agreement with data on SAs, ZnGa, and SiGa where pGa is the partial pressure of trimethylgallium in the input gas stream.  相似文献   

8.
We have investigated compositional plane of a wide band gap solid solution semiconductor Ca1−xCdxSe1−ySy (x0.32) using powder synthesis under thermal equilibrium condition. The solubility limit at 1273 K varies with respect to the Se concentration y, taking a minimum Cd solubility limit of 0.12 at y=0.8 and a maximum limit of 0.32 at y=1.0. It is found that the system can be lattice-matched to GaAs and InP under covering the energy band gap of ultraviolet–visible region. These results allow to design optoelectronic devices adopting the Ca1−xCdxSe1−ySy system.  相似文献   

9.
As stoichiometric LiTaO3 (LT) draws a considerable attention for integrated optical waveguide devices, we have investigated Zn diffusion into this material by diffusing 70- nm-thick ZnO films deposited on y-cut LT substrates at 700–900 °C under various atmospheres. It was observed that the surface quality was very sensitive to pressure, but weakly affected by other diffusion conditions such as temperature and atmosphere. While the surface degraded, being covered with some residuals after heat treatment at the atmospheric pressure, it was very smooth and clear when the pressure was lowered below about 10 Torr. Another feature of Zn-diffused stoichiometric LT is that the crystal maintains its transparency even after diffusion at a pressure as low as 0.1 Torr, thus without a post-annealing step required. The diffusion coefficient varied from D=1.1×10-2 to 5.5×10−1 μm2/h in the given temperature range, with an activation energy of .  相似文献   

10.
We report measurements of the initial growth and subsequent transient response of dendritic crystals of ammonium chloride grown from supersaturated aqueous solution. Starting from a small, nearly spherical seed held in unstable equilibrium, we lower the temperature to initiate growth. The growth speed and tip radius approach the same steady state values independent of initial seed size. We then explore the response of the growing dendrite to changes in temperature. The crystal adjusts quickly and smoothly to the new growth conditions, maintaining an approximately constant value of vρ2 throughout. Dissolving dendrites, on the other hand, are not characterized by the same value of vρ2.  相似文献   

11.
12.
The tri-methyl-Sb flow and the surfactant time dependence of photocurrent (PC) spectra was studied on InGaAsN/GaAs-strained multiple quantum wells (MQWs) structures grown by using metalorganic chemical vapor deposition (MOCVD). The structural properties of InGaAsN/GaAs-strained MQWs were investigated by using high-resolution X-ray diffraction (HRXRD). In the case of InGaAsN/GaAs-strained MQWs, an increase in compressive strain from an analysis of the satellite peaks in HRXRD was observed on increasing the tri-methyl-Sb flow and the surfactant time. For InGaAsN/GaAs-strained MQWs, the peaks observed in the photocurrent spectra were preliminarily assigned to electron–heavy hole (e1–hh) and electron–light hole (e1–lh) fundamental excitonic transitions. Their peaks are red-shifted with increasing tri-methyl-Sb flow and surfactant time. But the photocurrent peak is blue-shifted at the surfactant time of . It seems to be due to the improvement of structure properties at interface owing to a surfactant-suppressing surface diffusion phenomenon during growth. We compared this with the result of the experimental energies for InGaAsN/GaAs-strained MQWs.  相似文献   

13.
The strain state of 570 nm AlxGa1−xN layers grown on 600 nm GaN template by metal organic chemical vapor deposition was studied using Rutherford backscattering (RBS)/channeling and triple-axis X-ray diffraction measurements. The results showed that the degree of relaxation (R) of AlxGa1−xN layers increased almost linearly when x0.42 and reached to 70% when x=0.42. Above 0.42, the value of R varied slowly and AlxGa1−xN layers almost full relaxed when x=1 (AlN). In this work the underlying GaN layer was in compressive strain, which resulted in the reduction of lattice misfit between GaN and AlxGa1−xN, and a 570 nm AlxGa1−xN layer with the composition of about 0.16 might be grown on GaN coherently from the extrapolation. The different shape of (0 0 0 4) diffraction peak was discussed to be related to the relaxation.  相似文献   

14.
The nucleation and further crystallization of calcite on oxadiazole-terpyridine copolymer were investigated by the constant composition method. The apparent order of the crystallization process was found to be 2.3±0.2 indicative of a surface diffusion-controlled spiral growth mechanism. The number of ions forming the critical nucleus was found experimentally to be (n*=) 3 in accordance with the simulation by the PM3 method included in the MOPAC program package. The surface energy of the growing phase was found to be 29.5 mJ m−2.  相似文献   

15.
We report (1 1 1), (1 1 0) and (1 0 0) growth of CaF2 by the vertical Bridgman method. Crystals up to 250 mm diameter were grown and various growth parameters such as growth rate, temperature gradient and post-growth cooling rate were studied. It was found that the growth rate and the cooling rate are slower for the larger diameter crystals with a fixed temperature gradient. These growth parameters were optimized for growing the crystals along specific orientation after realizing that CaF2 has a tendency to grow along an orientation close to 1 1 0. Degradation in optical transmittance was evaluated by irradiating the crystal to γ-rays up to a dose of 105 rad. Optimized scavenger addition resulted in crystals with better radiation resistance and excellent VUV transmittance.  相似文献   

16.
Single crystals of Ba2HoRu1−xCuxO6 have been grown from high temperature solutions using PbO–PbF2 as solvent in the temperature range 1150–1250 °C. Crystals with a six sided plate like morphology measuring up to 3 mm across and 0.5 mm thick and polyhedral habit measuring up to 2 and 1 mm in thick mass were obtained. Powder X-ray diffraction patterns obtained on the crystals were indexed to give a monoclinic space group P21/n with lattice parameters a=5.875(2), b=5.874(3), c=8.960(1) and β=89.995(2)°. The crystals with x=0 show a single anomaly at 6.5 K corresponding to an antiferromagnetic phase with . The crystals containing Cu show additional anomalies at 18 and 48 K. The SEM and EDS analysis reveals a 2116 phase.  相似文献   

17.
The densities have been systematically measured in xLi2O–(1−x)B2O3 melts of different compositions with Li2O content varying from x=0 to 0.68 from their respective melting points up to about 1450 K with a modified Archimedean method. The density decreased with increasing temperature for all the melts measured in this work. When x<0.15, the plot of temperature versus density could be well fitted by a quadratic polynomial function, and when x0.15, density decreased linearly with increasing temperature. At a fixed temperature, the density of the melts increased rapidly with Li2O content, went through a maximum at about x=0.333 (Li2O–2B2O3), and then decreased slowly as Li2O content was further increased. In addition, the volume expansion coefficient (β) was calculated based on the densities measured in this work, and it was found that a maximum value appeared in the dependence of β on the molar ratio of Li2O at about x=0.333.  相似文献   

18.
Bi3.25Na2.25Ti3O12 thin films were prepared on p-Si(1 1 1) substrate by a metalorganic solution decomposition (MOSD) method. The structural characteristic and crystallization of the films were examined by X-ray diffraction. The current–voltage characteristic shows ohmic conductivity in the lower voltage range and space-charge-limited conductivity in the higher voltage range. The dielectric constant is 53 at a frequency of 100 kHz at room temperature and the dissipation factor exists at a minimal value of 0.02 at a frequency of 200 kHz. The retention time estimated by measuring capacitance is about 106 s. Nonhysteretic CV curves at various frequencies were also collected.  相似文献   

19.
We investigate the growth behavior and microstructure of Ge self-assembled islands of nanometer dimension on Si (0 0 1) substrate patterned with hexagonally ordered holes of 25 nm depth, 30 nm diameter, and 7×1010 cm−2 density. At 9 Å Ge coverage and 650 °C growth temperature, Ge islands preferentially nucleate inside the holes, starting at the bottom perimeter. Approximately 14% of the holes are filled by Ge islands. Moiré fringe analysis reveals partial strain relaxation of about 72% on average, which is not uniform even within a single island. Crystalline defects such as dislocation are observed from islands smaller than 30 nm. Increased Ge coverage to 70 Å forms larger aggregates of many interconnected islands with slightly increased filling factor of about 17% of the holes. Reducing the growth temperature to 280 °C results in much higher density of islands with a filling factor of about 80% and with some aggregates. The results described in this report represent a potential approach for fabricating semiconductor quantum dots via epitaxy with higher than 1010 cm−2 density.  相似文献   

20.
We are interested in determining the origin of the instabilities occurring in a metallic liquid (Prandtl number Pr=0.026) contained in horizontal circular cylinders heated from the end-walls. Our approach by direct numerical simulation (DNS) allows the determination of the transition thresholds for different aspect ratios varying from 1.5 to 10 as well as a precise characterization of the nature and structure of the new flow regimes close to the thresholds. In order to understand the mechanisms of flow transition, fluctuating energy analyses close to the threshold have been performed. The main contributions have been determined and localized in the cavity: shear has been found as the main instability factor but the way it acts is different according to the aspect ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号