首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.  相似文献   

2.
3.
To date, Tomo-PIV has involved the use of the multiplicative algebraic reconstruction technique (MART), where the intensity of each 3D voxel is iteratively corrected to satisfy one recorded projection, or pixel intensity, at a time. This results in reconstruction times of multiple hours for each velocity field and requires considerable computer memory in order to store the associated weighting coefficients and intensity values for each point in the volume. In this paper, a rapid and less memory intensive reconstruction algorithm is presented based on a multiplicative line-of-sight (MLOS) estimation that determines possible particle locations in the volume, followed by simultaneous iterative correction. Reconstructions of simulated images are presented for two simultaneous algorithms (SART and SMART) as well as the now standard MART algorithm, which indicate that the same accuracy as MART can be achieved 5.5 times faster or 77 times faster with 15 times less memory if the processing and storage of the weighting matrix is considered. Application of MLOS-SMART and MART to a turbulent boundary layer at Re θ = 2200 using a 4 camera Tomo-PIV system with a volume of 1,000 × 1,000 × 160 voxels is discussed. Results indicate improvements in reconstruction speed of 15 times that of MART with precalculated weighting matrix, or 65 times if calculation of the weighting matrix is considered. Furthermore the memory needed to store a large weighting matrix and volume intensity is reduced by almost 40 times in this case.  相似文献   

4.
This paper investigates the use of high-power light-emitting diode (LED) illumination for tomographic particle image velocimetry (PIV) as an alternative to traditional laser-based illumination. Modern solid-state LED devices can provide averaged radiant power in excess of 10 W and by operating the LED with short high current pulses theoretical pulse energies up to several tens of mJ can be achieved. In the present work, a custom-built drive circuit is used to drive a Luminus PT-120 high-power LED at pulsed currents of up to 150 A and 1 μs duration. Volumetric illumination is achieved by directly projecting the LED into the flow to produce a measurement volume of ≈3–4 times the size of the LED die. The feasibility of the volumetric LED illumination is assessed by performing tomographic PIV of homogenous, grid-generated turbulence. Two types of LEDs are investigated, and the results are compared with measurements of the same flow using pulsed Nd:YAG laser illumination and DNS data of homogeneous isotropic turbulence. The quality of the results is similar for both investigated LEDs with no significant difference between the LED and Nd:YAG illumination. Compared with the DNS, some differences are observed in the power spectra and the probability distributions of the fluctuating velocity and velocity gradients. These differences are attributed to the limited spatial resolution of the experiments and noise introduced during the tomographic reconstruction (i.e. ghost particles). The uncertainty in the velocity measurements associated with the LED illumination is estimated to approximately 0.2–0.3 pixel for both LEDs, which compares favourably with similar tomographic PIV measurements of turbulent flows. In conclusion, the proposed high-power, pulsed LED volume illumination provides accurate and reliable tomographic PIV measurements in water and presents a promising technique for flow diagnostics and velocimetry.  相似文献   

5.
The turbulent flow over a circular cavity with an aspect ratio of D/H = 2 is investigated by multi-planar stereoscopic particle image velocimetry and with tomographic particle image velocimetry (PIV). The main aim of the study is the flow topology and the turbulent structure of the asymmetrical flow pattern that forms inside the cavity at these specific conditions. The flow field is measured in the vertical symmetry plane to describe the overall recirculation pattern in the cavity and the turbulent shear layer developing from the separation point. In this specific regime the shear layer fluctuations are recognized as those caused by instabilities together with the effect of the incoming boundary layer turbulence. Additional observations performed at several wall-parallel planes at different height inside the cavity allow to further evaluate the secondary flow circulation generated by this asymmetric regime. The observed flow pattern consists of a steady vortex, occupying the entire cavity volume and placed diagonally inside the cavity such to entrain the external flow from one side, capture it into a circulatory motion and eject it from the opposite side of the cavity. The spatial distribution of the turbulent fluctuations also reveals the same structure. The tomographic PIV measurement returns a visual inspection to the instantaneous three-dimensional structure of the turbulent fluctuations, which at the investigated height exhibit a low level of coherence with slightly elongated vortices in the recirculating flow inside the cavity.  相似文献   

6.
Tomographic particle image velocimetry (Tomo-PIV) was applied on a turbulent round air jet to quantitatively assess the accuracy of velocity gradients obtained in the self-similar turbulent region. The jet Reynolds number based on the nozzle diameter (d) was Red = 3000. Mean velocity, turbulent intensities, and Reynolds shear stress at the center plane of the jet were measured. In addition, statistical results of Tomo-PIV along the axial direction were assessed by performing a separate set of two-dimensional two-component PIV experiments on a “side view” plane along the jet axis. Moreover, the probability distribution functions of four components of the measured velocity gradients in the axial and radial directions were validated by these “side view” planar PIV data. The root mean square of the velocity divergence values relative to the norm of the velocity gradient tensor was 0.36. Furthermore, the on- and off-diagonal components of the velocity gradients satisfied the axisymmetric isotropy conditions. The divergence error in the data affected only areas with low gradient magnitude. Therefore, turbulent structures in the regions with intense vorticity and dissipation can be closely monitored. On this basis, the joint pdfs of the invariants of the velocity gradient and strain and rotation tensor rates were produced and compared well with those in isotropic turbulence studies.  相似文献   

7.
Stereoscopic particle image velocimetry   总被引:25,自引:19,他引:6  
Stereoscopic particle image velocimetry (PIV) employs two cameras to record simultaneous but distinct off-axis views of the same region of interest (illuminated plane within a flow seeded with tracer particles). Sufficient information is contained in the two views to extract the out-of-plane motion of particles, and also to eliminate perspective error which can contaminate the in-plane measurement. This review discusses the principle of stereoscopic PIV, the different stereoscopic configurations that have been used, the relative error in the out-of-plane to the in-plane measurement, and the relative merits of calibration-based methods for reconstructing the three-dimensional displacement vector in comparison to geometric reconstruction. It appears that the current trend amongst practitioners of stereoscopic PIV is to use digital cameras to record the two views in the angular displacement configuration while incorporating the Scheimpflug condition. The use of calibration methods has also gained prominence over geometric reconstruction. Received: 15 April 1999/Accepted: 1 February 2000  相似文献   

8.
Tomographic particle image velocimetry   总被引:8,自引:0,他引:8  
This paper describes the principles of a novel 3D PIV system based on the illumination, recording and reconstruction of tracer particles within a 3D measurement volume. The technique makes use of several simultaneous views of the illuminated particles and their 3D reconstruction as a light intensity distribution by means of optical tomography. The technique is therefore referred to as tomographic particle image velocimetry (tomographic-PIV). The reconstruction is performed with the MART algorithm, yielding a 3D array of light intensity discretized over voxels. The reconstructed tomogram pair is then analyzed by means of 3D cross-correlation with an iterative multigrid volume deformation technique, returning the three-component velocity vector distribution over the measurement volume. The principles and details of the tomographic algorithm are discussed and a parametric study is carried out by means of a computer-simulated tomographic-PIV procedure. The study focuses on the accuracy of the light intensity field reconstruction process. The simulation also identifies the most important parameters governing the experimental method and the tomographic algorithm parameters, showing their effect on the reconstruction accuracy. A computer simulated experiment of a 3D particle motion field describing a vortex ring demonstrates the capability and potential of the proposed system with four cameras. The capability of the technique in real experimental conditions is assessed with the measurement of the turbulent flow in the near wake of a circular cylinder at Reynolds 2,700.  相似文献   

9.
Digital particle image velocimetry   总被引:51,自引:13,他引:51  
Digital particle image velocimetry (DPIV) is the digital counterpart of conventional laser speckle velocitmetry (LSV) and particle image velocimetry (PIV) techniques. In this novel, two-dimensional technique, digitally recorded video images are analyzed computationally, removing both the photographic and opto-mechanical processing steps inherent to PIV and LSV. The directional ambiguity generally associated with PIV and LSV is resolved by implementing local spatial cross-correlations between two sequential single-exposed particle images. The images are recorded at video rate (30 Hz or slower) which currently limits the application of the technique to low speed flows until digital, high resolution video systems with higher framing rates become more economically feasible. Sequential imaging makes it possible to study unsteady phenomena like the temporal evolution of a vortex ring described in this paper. The spatial velocity measurements are compared with data obtained by direct measurement of the separation of individual particle pairs. Recovered velocity data are used to compute the spatial and temporal vorticity distribution and the circulation of the vortex ring.  相似文献   

10.
Stereoscopic micro particle image velocimetry   总被引:1,自引:0,他引:1  
A stereoscopic micro-PIV (stereo-μPIV) system for the simultaneous measurement of all three components of the velocity vector in a measurement plane (2D–3C) in a closed microchannel has been developed and first test measurements were performed on the 3D laminar flow in a T-shaped micromixer. Stereomicroscopy is used to capture PIV images of the flow in a microchannel from two different angles. Stereoscopic viewing is achieved by the use of a large diameter stereo objective lens with two off-axis beam paths. Additional floating lenses in the beam paths in the microscope body allow a magnification up to 23×. The stereo-PIV images are captured simultaneously by two CCD cameras. Due to the very small confinement, a standard calibration procedure for the stereoscopic imaging by means of a calibration target is not feasible, and therefore stereo-μPIV measurements in closed microchannels require a calibration based on the self-calibration of the tracer particle images. In order to include the effects of different refractive indices (of the fluid in the microchannel, the entrance window and the surrounding air) a three-media-model is included in the triangulation procedure of the self-calibration. Test measurement in both an aligned and a tilted channel serve as an accuracy assessment of the proposed method. This shows that the stereo-μPIV results have an RMS error of less than 10% of the expected value of the in-plane velocity component. First measurements in the mixing region of a T-shaped micromixer at Re = 120 show that 3D flow in a microchannel with dimensions of 800 × 200 μm2 can be measured with a spatial resolution of 44 × 44 × 15 μm3. The stationary flow in the 200 μm deep channel was scanned in multiple planes at 22 μm separation, providing a full 3D measurement of the averaged velocity distribution in the mixing region of the T-mixer. A limitation is that this approach requires a stereo-objective that typically has a low NA (0.14–0.28) and large depth-of-focus as opposed to high NA lenses (up to 0.95 without immersion) for standard μPIV.  相似文献   

11.
Laser scanning, corresponding to time-dependent deflections of laser beam across a field of interest, can provide relatively high illumination intensity of small particles, thereby allowing implementation of high image-density particle image velocimetry (PIV). Scanning techniques employing a rotating (multi-faceted) mirror, an oscillating mirror, and an acousto-optic deflector are addressed. Issues of illumination intensity and exposure, rate of scan of the laser beam, and retrace time of the scanning beam are assessed. Representative classes of unsteady separated flows investigated with laser-scanning PIV are described.  相似文献   

12.
 The technical aspects of a photographic stereo camera for three-dimensional particle image velocimetry are described herein. The hybrid concept of the camera combines advantages of the angular displacement and the translation method. The camera uses two CCD sensors in order to adjust the lens distances and angles to meet the Scheimpflug criterion and two coupled rotating mirrors for image shifting. An application to a jet flow with an exit velocity of 33 m/s demonstrates the succesfull optimization of the recording process. Received: 27 September 1996/Accepted: 6 March 1997  相似文献   

13.
Second-order accurate particle image velocimetry   总被引:1,自引:0,他引:1  
 An adaptive, second-order accurate particle image velocimetry (PIV) technique is presented. The technique uses two singly exposed images that are interrogated using a modified cross-correlation algorithm. Consequently, any of the equipment commonly available for conventional PIV (such as dual head Nd: YAG lasers, interline transfer CCD cameras, etc.) can be used with this more accurate algorithm. At the heart of the algorithm is a central difference approximation to the flow velocity (accurate to order Δt 2) versus the forward difference approximation (accurate to order Δt) common in PIV. An adaptive interrogation region-shifting algorithm is used to implement the central difference approximation. Adaptive shifting algorithms have been gaining popularity in recent years because they allow the spatial resolution of the PIV technique to be maximized. Adaptive shifting algorithms also have the virtue of helping to eliminate velocity bias errors. The second- order accuracy resulting from the central difference approximation can be obtained with relatively little additional computational effort compared to that required for a standard first-order accurate forward difference approximation. The adaptive central difference interrogation (CDI) algorithm has two main advantages over adaptive forward difference interrogation (FDI) algorithms: it is more accurate, especially at large time delays between camera exposures; and it provides a temporally symmetric view of the flow. By comparing measurements of flow around a single red blood cell made using both algorithms, the CDI technique is shown to perform better than conventional FDI-PIV interrogation algorithms near flow boundaries. Cylindrical Taylor–Couette flow images, both experimental and simulated, are used to demonstrate that the CDI algorithm is significantly more accurate than conventional PIV algorithms, especially as the time delay between exposures is increased. The results of the interrogations are shown to agree quite well with analytical predictions and confirm that the CDI algorithm is indeed second-order accurate while the conventional FDI algorithm is only first-order accurate. Received: 15 June 2000/Accepted: 2 February 2001  相似文献   

14.
To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Reθ = 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume “fat” light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.  相似文献   

15.
The paper describes the implementation of a Digital Particle Image Velocimeter (in the Particle Tracking mode) using an advanced, ultra-high speed gated, image intensifier, monochrome video camera. The camera was controlled locally by an internal computer chip with which the image capture and analysis software suite could communicate. The software was mounted on a PC and the captured images were stored on a (PC) frame board, which was synchronised with the camera. The camera could be triggered by external events or by keyboard or software prompt. The frame grabber had on-board storage for four frames of 512 by 512 pixels, each having a resolution of 256 grey levels. This allowed the implementation of a flexible and cost effective DPIV system with a wide dynamic range.Examples are given of the use of the system at very low illumination levels and in the presence of flow directional ambiguity associated with gravity wave motion. Phase sampling in a periodic flow is also demonstrated. The image intensifier hardware and control software allowed multiple exposures, of different duration, within the same digital frame. The camera sensitivity could be adjusted to suit different levels of illumination. This feature is shown to allow the capture of DPIV images with embedded time signatures.  相似文献   

16.
Particle image velocimetry (PIV) was used to measure velocity fields inside and around oscillating methane-air diffusion flames with a slot fuel orifice. PIV provided velocity and directional information of the flow field comprised of both the flame and air. From this, information on flow paths of entrained air into the flame were obtained and visualized. These show that at low fuel flow rates for which the oscillations were strongest, the responsible mechanism for the oscillating flow appeared to be the repetitive occurrence of flame quenching. PIV findings indicated that quenching appears to be associated primarily with air entrainment. Velocity was found to be considerably larger in regions where quenching occurred. The shedding of vortices in the shear layer occurs immediately outside the boundary of the flame envelope and was speculated to be the primary driving force for air entrainment.  相似文献   

17.
Custom-produced fluorescent particles are presented and their use as tracers for particle image velocimetry is evaluated. The fabrication procedure is explained and the main properties of the particles are described. The advantages of using fluorescent particles over nonfluorescent ones are discussed, in particular, for applications involving large facilities, as those used in hydraulic research. Images using the produced particles are also shown. This work was done under the Grants N00014-05-1-0083, N00014-01-1-0540 and N00014-06-1-0661 from the U.S. Office of Naval Research.  相似文献   

18.
Twenty years of particle image velocimetry   总被引:11,自引:0,他引:11  
The development of the method of particle image velocimetry (PIV) is traced by describing some of the milestones that have enabled new and/or better measurements to be made. The current status of PIV is summarized, and some goals for future advances are addressed.  相似文献   

19.
Particle image velocity measurements were applied on thermally driven convection at low Rayleigh numbers. In a model experiment using a water column heated from bottom and cooled from above, the velocity field was studied at different vertical temperature gradients. In the testing facility with high aspect ratio (about 19) representing a 1-m-long column with 5?cm diameter, occurrence of free convection was verified for destabilizing temperature gradients of 0.1–2?K/m. The PIV results revealed that significant flow exists already at low vertical temperature gradients. The velocity of the stable large-scale circulations increased linearly with temperature gradient (<1?K/m) from 8?×?10?5 to 1?×?10?3?m/s. At higher temperature gradients (1–2?K/m), a transition from quasi-stationary into time-dependent flow was observed, where convection cells changed position, number, and form temporarily. The motivation of this research was to gain more insight into density-driven convection in boreholes and groundwater monitoring wells.  相似文献   

20.
The multi-plane stereo particle image velocimetry (MSPIV) technique has been applied to an investigation of the spatial and temporal development of turbulent spots in a laminar flat-plate boundary-layer flow with a slight adverse pressure gradient. On the basis of a large number of evaluated instantaneous 3- and 2-component velocity-vector fields, measured synchronously and separated in space, or with different time separations in one or two planes, the technique enabled the determination of several statistical quantities of fluid mechanical significance. The shape and role of coherent substructures for the growth and turbulent mixing of the spot were the focus of this investigation.List of symbols x, y, z stream-, normal-, and spanwise coordinate - U freestream velocity (U=7 m/s) - Re Reynolds number, =Rex1/2 - u, v, w instantaneous velocity components - u, v, w fluctuation velocity components - Q-1,...,4 quadrants of Reynolds stress uv' - PDF probability density function - Rii space–(time)-correlation function - wavelength of laser light - TE trailing edge of turbulent spot - LE leading edge of turbulent spot  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号