首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We present quantitative analysis of image sequences of multi-stream injection nozzle flows with several different injection geometries in an experiment simulating mixing in a chemical oxygen-iodine laser. To visualize mixing, image sequences were acquired with planar laser-induced fluorescence (PLIF) in iodine that was injected into the main flow. The injection nozzle consisted of a slot, ejector, and injector block, with rows of ejector and injector holes along the slot length. The ejector flow exits in an underexpanded state so that upon expanding it forces the slot and injector flows together to enhance mixing. For this study, the diameter and geometry of ejector holes were varied to assess their effect on mixing. Two configurations of ejector holes were used, each with two different diameters for a total of four cases with data collected at downstream stations. We carry out a quantitative mixing analysis for these configurations, using two methods to quantify the mixing. The first method considers the statistics of the PLIF image intensity histograms, which are bimodal for poorly-mixed flows and have a single peak in well-mixed flows. The second method quantifies the properties of the mixing interface. Our analysis shows that two injection schemes significantly enhance mixing by stretching the mixing interface.  相似文献   

2.
3.
The effect of vortex generators, in the form of small tabs projecting into the flow at the nozzle exit, aided by secondary tabs on either side, on the mixing characteristics of an axisymmetric jet at Mach number 1.7 is investigated. Experimental studies on the basic features of the jet from a nozzle with secondary tabs are conducted to assess the free jet characteristics as well as the momentum and thermal mixing behavior. The secondary tabs were found to increase the jet spread and distort the jet cross-section and were found to cause substantial enhancement of mixing of supersonic jets. Jet structure is observed using flow-visualization techniques. LLS images are employed to obtain cross-sectional views of the jet with the introduction of secondary tabs. The ability of secondary tabs to eliminate the screech noise of the supersonic jet is also observed. Received: 3 February 2000/Accepted: 8 February 2001  相似文献   

4.
Numerical investigations were made of the propagation, in a supersonic wake, of uncalculated jets, flowing out of nozzles of square and rectangular cross section, and of lumped jets, made up of from two to nine individual jets; the special characteristics of their flow were investigated in the initial, transitional, and main sections. Specifically, for lumped jets, the possibility of replacing them by a single axisymmetric jet, equivalent in mass-flow rate, is discussed. To calculate a three-dimensional unexpanded supersonic jet, flowing out into a wake, in [1] it was proposed to use a numerical method for solving a simplified system of Navier-Stokes equations for steady-state flow, and numerical investigations were made of the three-dimensional interaction of four jets in a supersonic wake, at small distances from the outlet cross section of the nozzle, i.e., mainly in the initial sections of the jets, where the mixing layers along the boundaries of the jets are still not closed. Here the method of [1] is used to study the special characteristics of three-dimensional viscous jets at large distances from the outlet cross section of the nozzle in the region of the main section, where the mixing layers have come together and a single three-dimensional jet has been formed. The system of equations, the boundary conditions, the numerical method, the system of coordinates, and the nomenclature used are the same as in [1].  相似文献   

5.
Using the particle-based laser scattering imaging technique, schlieren system and surface oil-flow visualization technique, the flow patterns and mixing characteristics of multiple injections with tandem multi-orifices and parallel multi-orifices in a supersonic vitiated air flow were investigated in this paper. All injectors have a declined angle of 30 degree to the freestream direction. The distance between the tandem orifices and that between the parallel orifices was varied. The experimental results showed that decreasing the distance between the tandem orifices will reduce the pressure and velocity of the stream upstream of the second jet, which results in the increase of the penetration height of the second injection and quick mixing of the whole field. For the small distance between the parallel multi-orifices, the bow shock waves upstream of the injected jets connect with each other and the air stream entered into the gap between the jets is not enough, resulting in the decrease of the mixing effect. Large distance between the parallel multi-orifices decreases the interaction between the injection jets. For the mixing enhancement, there should be a proper optimized distance between the parallel injection orifices.  相似文献   

6.
Three-dimensional supersonic turbulent flow in the presence of symmetric transverse injection of round jets through slots in the walls is studied numerically. The simulation is based on Favre averaged Navier-Stokes equations solved using the Beam-Warming method. The influence of the ratio of the pressure in the jet to that in the flow (pressure ratio) on the spatial interaction of the injected jet with the oncoming flow is studied. Experimental pressure distributions on the wall near the jet approximated by curvilinear closed ellipses are reproduced numerically. The mechanism of the formation of two symmetric vortices in the mixing layer between the jet and the oncoming flow is studied. The results of the calculations are found to be in satisfactory agreement with the experimental dependence of the length of the separation zone on the pressure ratio of the jet to the flow.  相似文献   

7.
A numerical study is performed on a two-dimensional confined opposed-jet configuration to gain basic understanding of the flow and mixing characteristics of pulsed turbulent opposed-jet streams. The sinusoidal pulsating flows with different temperature are imposed at opposed-jet inlets, which are mixed with each other in a confined flow channel. The current mathematical model taking the effect of temperature-dependent thermo-physical properties of fluid into account can present a good prediction for opposed-jet streams compared with experimental data. The numerical results indicate that introduction of temperature difference between opposed jet flows can lead to an asymmetric flow field immediately after jet impact, and the sinusoidal flow pulsations can effectively enhance mixing rate of opposed jets. Parameter studies are conducted for optimization of pulsed opposed jets. The effect of Reynolds number and flow pulsation as well as the configuration geometry on the mixing performance are discussed in detail. Examination of the flow and thermal field shows that the mixing rate is highly dependent on the vortex-induced mixing and residence time of jet fluid in the exit channel.  相似文献   

8.
This paper aims at investigating the detailed structure of turbulent non-reacting dilute spray flows using advanced laser diagnostics. A simple spray jet nozzle is designed to produce a two-phase slender shear flow in a co-flowing air stream with well-defined boundary conditions. The carrier flow is made intentionally simple and easy to model so that the focus can be placed on the important aspects of droplet dispersion and evaporation, as well as turbulence–droplet interactions. Phase Doppler interferometry is employed to record droplet quantities, while planar laser-induced fluorescence imaging is applied separately to obtain acetone vapour data. Measurements are conducted for four acetone spray jets in air at several axial stations starting from the nozzle exit. The combined liquid and vapour mass fluxes of acetone integrated across the jet at downstream locations agree satisfactorily with the total mass flow rate of acetone injected.  相似文献   

9.
Localized arc filament plasma actuators (LAFPAs) have been developed and used at The Gas Dynamics and Turbulence Laboratory for the purpose of controlling high-speed and high Reynolds number jets. The ability of LAFPAs for use in both subsonic and supersonic jets has been explored, and experiments to date have shown that these actuators have significant potential for mixing enhancement and noise control applications. While it has been established that the actuators manipulate instabilities of the jet, the exact nature of how the actuation couples to the flow is still unclear. All of the results previously reported have been based on a nozzle extension that has an azimuthal groove of 1 mm width and 0.5 mm depth along the inner surface approximately 1 mm upstream of nozzle extension exit. The ring groove was initially added to shield the plasma arcs from the high-momentum flow. However, the effect of the ring groove on the actuation mechanism is not known. To explore this effect, a new nozzle extension is designed, which relocates the actuators to the nozzle extension face and eliminates the ring groove. Schlieren images, particle image velocimetry and acoustic results of a Mach 0.9 jet of Reynolds number ~6.1 × 105 show similar trends and magnitudes with and without a ring groove. Thus, it is concluded that the ring groove does not play a primary role in the LAFPAs’ control mechanism. Furthermore, the effect of the duty cycle of the actuator input pulse on the LAFPAs’ control authority is investigated. The results show that the minimum duty cycle that provides complete plasma formation has the largest control over the jet.  相似文献   

10.
Exhaustion of supersonic argon and nitrogen jets through sonic and supersonic nozzles into a rarefied submerged space at high stagnation pressures is studied experimentally. The shapes and lengths of the jets are visualized by means of detecting radiation excited in the considered flow by an electron beam. Dependences of the geometric parameters of the jets on exhaustion and clusterization conditions at low Reynolds numbers based on the reference length of the jet are obtained. It is found that the coefficient of proportionality between the length of the first “barrel” of the supersonic jet and the degree of jet expansion increases with an increase in the stagnation pressure. Empirical dependences of the proportionality coefficient on the size of clusters formed in supersonic flows are derived for the first time.  相似文献   

11.
The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100–1,000 μm in size with exit velocities in the range of 300–500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.  相似文献   

12.
This study describes a technique that combines the benefits of focusing schlieren and phase conditioning. Focusing schlieren blurs and drops contrast of non-critical features whereas phase conditioning emphasizes periodic flow features, and their combination produces unique results. The supersonic jets that we studied produced an intense tone referred to as screech. The measured screech tone signal was used as input to the phase conditioning circuit that adjusted the strobing light source to the vertical synchronization pulse of a CCD camera. The sharp video images obtained by this technique could either be frozen or continuously swept through one period of screech to acquire a slow motion video record of the jet unsteadiness. Two cases were visualized in this study: first, an underexpanded jet from a convergent rectangular nozzle at various fully expanded Mach numbers. Second, a supersonic jet emerging from a convergent-divergent rectangular nozzle at a design Mach number of 1.4, artificially excited by impingement tones. The results of this study illustrate the usefulness of this system in visualizing oscillatory flows.The authors would like to thank Dr. Edward J. Rice for his contributions including the design of the impingement obstacles. The efforts of Brentley C. Nowlin (NASA Lewis), and James E. Little (NYMA Inc.) in the design and construction of the strobe trigger mechanism are highly appreciated. We also thank Janet Ivancic (NASA Lewis Photo Lab) for the image enhancement.  相似文献   

13.
The generation of high-speed liquid (water and diesel fuel) jets in the supersonic range using a vertical single-stage powder gun is described. The effect of projectile velocity and mass on the jet velocity is investigated experimentally. Jet exit velocities for a set of nozzle inner profiles (e.g. straight cone with different cone angles, exponential, hyperbolic etc.) are compared. The optimum condition to achieve the maximum jet velocity and hence better atomization and mixing is then determined. The visual images of supersonic diesel fuel jets (velocity about 2000 m/s) were obtained by the shadowgraph method. This provides better understanding of each stage of the generation of the jets and makes the study of their characteristics and the potential for auto-ignition possible. In the experiments, a pressure relief section has been used to minimize the compressed air wave ahead of the projectile. To clarify the processes inside the section, additional experiments have been performed with the use of the shadowgraph method, showing the projectile travelling inside and leaving the pressure relief section at a velocity of about 1100 m/s. Received 23 January 2001 / Accepted 2 July 2001  相似文献   

14.
A planar and instantaneous visualization study of high-speed gas jets and their airblast sprays was performed to qualitatively examine the different atomization performances of different gas nozzles. For the visualization of high-speed gas jets (with no liquid injected), Nd:YAG pulsed laser sheets imaged the clustered vapor molecules in the Rayleigh range (d?λ), condensed from the natural humidity during the isentropic gas expansion through a nozzle. This method visualized both underexpanded sonic gas jets from a converging nozzle (SN-Type) and overexpanded supersonic gas jets from a converging-diverging nozzle (CD-Type). When liquid is cross-injected, the same laser sheet images the spray droplets of relatively large sizes (d?λ). The present visualization results show that the SN-Type nozzle develops a wider spray than the CD-Type nozzle, quite probably because the SN-Type nozzle has a wider gas jet (in the absence of liquid) than the CD-Type. Also, the wider spray of the SN-Type nozzle lowers the probability of droplet coalescence and generates finer sprays compared to the CD-Type nozzle. These visualization results qualitatively agree with the previous quantitative finding of the different atomization characteristics of the two types of nozzles (Park et al. 1996).  相似文献   

15.
Very narrow supersonic jets expanding from a small size convergent-divergent nozzle are visualized by the laser induced fluorescence method and simulated numerically using the piecewise linear method. Good agreement between the experiment and the numerical result is obtained in the jet structure, i.e. the shape of the barrel shock, the location of its reflection point on the axis, and the shape of the jet boundary.  相似文献   

16.
The spatial structure of the flow in a supersonic underexpanded jet exhausting from a convergent nozzle with vortex generators (chevrons) at the exit is experimentally studied. Exhaustion of a supersonic underexpanded jet from a nozzle with chevrons at the nozzle exit is numerically simulated with the use of the Fluent commercial software package. The experimental and numerical data are demonstrated to be in reasonable agreement. The influence of chevrons on the process of gas mixing is estimated.  相似文献   

17.
The supersonic combustion RAM jet (SCRAM jet) engine is expected to be used in next-generation space planes and hypersonic airliners. To develop the engine, stabilized combustion in a supersonic flow field must be attained even though the residence time of flow is extremely short. A mixing process for breathed air and fuel injected into the supersonic flow field is therefore one of the most important design problems. Because the flow inside the SCRAM jet engine has high enthalpy, an experimental facility is required to produce the high-enthalpy flow field. In this study, a detonation-driven shock tunnel was built to produce a high-enthalpy flow, and a model SCRAM jet engine equipped with a backward-facing step was installed in the test section of the facility to visualize flow fields using a color schlieren technique and high-speed video camera. The fuel was injected perpendicularly to a Mach 3 flow behind the backward-facing step. The height of the step, the injection distance and injection pressure were varied to investigate the effects of the step on air/fuel mixing characteristics. The results show that the recirculation region increases as the fuel injection pressure increases. For injection behind the backward-facing step, mixing efficiency is much higher than with a flat plate. Also, the injection position has a significant influence on the size of the recirculation region generated behind the backward-facing step. The schlieren photograph and pressure histories measured on the bottom wall of the SCRAM jet engine model show that the fuel was ignited behind the step.Communicated by K. Takayama PACS 47.40.Ki  相似文献   

18.
The present study describes an experimental work to investigate the effect of a nozzle exit reflector on a supersonic jet that is discharged from a convergent–divergent nozzle with a design Mach number of 2.0. An annular reflector is installed at the nozzle exit and its diameter is varied. A high-quality spark schlieren optical system is used to visualize detailed jet structures with and without the reflector. Impact pressure measurement using a pitot probe is also carried out to quantify the reflector’s effect on the supersonic jet which is in the range from an over-expanded to a moderately under-expanded state. The results obtained show that for over-expanded jets, the reflector substantially increases the jet spreading rate and reduces the supersonic length of the jet, compared with moderately under-expanded jets. The reflector’s effect appears more significant in imperfectly expanded jets that have strong shock cell structures, but is negligible in correctly expanded jet.  相似文献   

19.
Results of numerical simulations and experimental investigations of self-oscillations arising in the case of impingement of an overexpanded or underexpanded jet onto an obstacle with a spike are reported. The mechanisms of the emergence and maintaining of self-oscillations for overexpanded and underexpanded jets are elucidated. It is demonstrated that self-oscillations are caused by disturbances in a supersonic jet, which induce mass transfer between the supersonic flow and the region between the shock wave and the obstacle. The feedback is ensured by acoustic waves generated by the radial jet on the obstacle. These waves propagate in the gas surrounding the jet, impinge onto the nozzle exit, and initiate disturbances of the supersonic jet parameters. In the overexpanded jet, these disturbances penetrate into the jet core, where they are amplified in oblique shock waves.  相似文献   

20.
We present large-eddy simulation (LES) of a high-pressure gas jet that is injecting into a quiescent inert environment. The injection is through a nozzle with a diameter of 1.35 mm. Four injection strategies are considered in which the results of a single continuous injection case are compared with those of double injection cases with different injection splitting timing. In all double injection cases, the injection pulsing interval is kept the same, and the total injected mass is equal to that of the single injection case. On the other hand, the splitting timing is varied to investigate the effects of various injection splitting strategies on the mixture formation and the penetration length of the jet. Results show that the jet penetration length is not so sensitive to the splitting timing whereas the mixing quality can significantly change as a result of shifting the onset of injection splitting toward the end of injection. Especially, it is found that by adopting a post-injection strategy where a single injection splits into the main injection and late small injection near the end of injection period the mixing between the injected gas and ambient air is significantly improved. This trend is not as obvious when the injection splitting timing shifts toward the beginning or even in the middle of injection period. The increase of entrainment in the tail of each injection is one of the underlying physics in the mixing improvement in double injection cases. In addition to that, splitting a single injection into two smaller injections increases the surrounding area of the jet and also stretches it along the axial direction. It can potentially increase the mixing of injected gas with the ambient air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号