首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study sought to differentiate between the effect of stimulus bandwidth and the effect of number of activated auditory channels on gap detection in narrow bands of noise. The aim was to clarify the role of across-frequency analysis in temporal processing. Experiment 1 established that when total noise bandwidth is held constant at 100 Hz, gap detection improves as stimulus energy is distributed to both lower and higher frequencies. Experiment 2a showed that the effect was smaller, or was absent, when the cumulative stimulus bandwidth was increased from 100 to 200 Hz. Experiment 2b confirmed that the benefit of spectral dispersion for the narrower cumulative bandwidth also held for a higher frequency region. The results suggest that in conditions where the cumulative stimulus bandwidth is relatively narrow and, concomitantly, gap detection is relatively poor, there is an advantage in dispersing the stimulus across a number of auditory channels. The advantage for the distribution of energy across a range of auditory channels may be offset when the spectral spacing of bands exceeds a critical value.  相似文献   

2.
Temporal modulation transfer functions were obtained using sinusoidal carriers for four normally hearing subjects and three subjects with mild to moderate cochlear hearing loss. Carrier frequencies were 1000, 2000 and 5000 Hz, and modulation frequencies ranged from 10 to 640 Hz in one-octave steps. The normally hearing subjects were tested using levels of 30 and 80 dB SPL. For the higher level, modulation detection thresholds varied only slightly with modulation frequency for frequencies up to 80 Hz, but decreased for high modulation frequencies. The decrease can be attributed to the detection of spectral sidebands. For the lower level, thresholds varied little with modulation frequency for all three carrier frequencies. The absence of a decrease in the threshold for large modulation frequencies can be explained by the low sensation level of the spectral sidebands. The hearing-impaired subjects were tested at 80 dB SPL, except for two cases where the absolute threshold at the carrier frequency was greater than 70 dB SPL; in these cases a level of 90 dB was used. The results were consistent with the idea that spectral sidebands were less detectable for the hearing-impaired than for the normally hearing subjects. For the two lower carrier frequencies, there were no large decreases in threshold with increasing modulation frequency, and where decreases did occur, this happened only between 320 and 640 Hz. For the 5000-Hz carrier, thresholds were roughly constant for modulation frequencies from 10 to 80 or 160 Hz, and then increased monotonically, becoming unmeasurable at 640 Hz. The results for this carrier may reflect "pure" effects of temporal resolution, without any influence from the detection of spectral sidebands. The results suggest that temporal resolution for deterministic stimuli is similar for normally hearing and hearing-impaired listeners.  相似文献   

3.
The present study investigates the nature of spectral envelope perception using a spectral modulation detection task in which sinusoidal spectral modulation is superimposed upon a noise carrier. The principal goal of this study is to characterize spectral envelope perception in terms of the influence of modulation frequency (cycles/octave), carrier bandwidth (octaves), and carrier frequency region (defined by lower and upper cutoff frequencies in Hz). Spectral modulation detection thresholds measured as a function of spectral modulation frequency result in a spectral modulation transfer function (SMTF). The general form of the SMTF is bandpass in nature, with a minimum modulation detection threshold in the region between 2 to 4 cycles/octave. SMTFs are not strongly dependent on carrier bandwidth (ranging from 1 to 6 octaves) or carrier frequency region (ranging from 200 to 12 800 Hz), with the exception of carrier bands restricted to very low audio frequencies (e.g., 200-400 Hz). Spectral modulation detection thresholds do not depend on the presence of random level variations or random modulation phase across intervals. The SMTFs reported here and associated excitation pattern computations are considered in terms of a linear systems approach to spectral envelope perception and potential underlying mechanisms for the perception of spectral features.  相似文献   

4.
Speech recognition with altered spectral distribution of envelope cues.   总被引:8,自引:0,他引:8  
Recognition of consonants, vowels, and sentences was measured in conditions of reduced spectral resolution and distorted spectral distribution of temporal envelope cues. Speech materials were processed through four bandpass filters (analysis bands), half-wave rectified, and low-pass filtered to extract the temporal envelope from each band. The envelope from each speech band modulated a band-limited noise (carrier bands). Analysis and carrier bands were manipulated independently to alter the spectral distribution of envelope cues. Experiment I demonstrated that the location of the cutoff frequencies defining the bands was not a critical parameter for speech recognition, as long as the analysis and carrier bands were matched in frequency extent. Experiment II demonstrated a dramatic decrease in performance when the analysis and carrier bands did not match in frequency extent, which resulted in a warping of the spectral distribution of envelope cues. Experiment III demonstrated a large decrease in performance when the carrier bands were shifted in frequency, mimicking the basal position of electrodes in a cochlear implant. And experiment IV showed a relatively minor effect of the overlap in the noise carrier bands, simulating the overlap in neural populations responding to adjacent electrodes in a cochlear implant. Overall, these results show that, for four bands, the frequency alignment of the analysis bands and carrier bands is critical for good performance, while the exact frequency divisions and overlap in carrier bands are not as critical.  相似文献   

5.
The purpose of this study was to compare the role of frequency selectivity in measures of auditory and vibrotactile temporal resolution. In the first experiment, temporal modulation transfer functions for a sinusoidally amplitude modulated (SAM) 250-Hz carrier revealed auditory modulation thresholds significantly lower than corresponding vibrotactile modulation thresholds at SAM frequencies greater than or equal to 100 Hz. In the second experiment, auditory and vibrotactile gap detection thresholds were measured by presenting silent gaps bounded by markers of the same or different frequency. The marker frequency F1 = 250 Hz preceded the silent gap and marker frequencies after the silent gap included F2 = 250, 255, 263, 310, and 325 Hz. Auditory gap detection thresholds were lower than corresponding vibrotactile thresholds for F2 markers less than or equal to 263 Hz, but were greater than the corresponding vibrotactile gap detection thresholds for F2 markers greater than or equal to 310 Hz. When the auditory gap detection thresholds were transformed into filter attenuation values, the results were modeled well by a constant-percentage (10%) bandwidth filter centered on F1. The vibrotactile gap detection thresholds, however, were independent of marker frequency separation. In a third experiment, auditory and vibrotactile rate difference limens (RDLs) were measured for a 250-Hz carrier at SAM rates less than or equal to 100 Hz. Auditory RDLs were lower than corresponding vibrotactile RDLs for standard rates greater than 10 Hz. Combination tones may have confounded auditory performance for standard rates of 80 and 100 Hz. The results from these experiments revealed that frequency selectivity influences auditory measures of temporal resolution, but there was no evidence of frequency selectivity affecting vibrotactile temporal resolution.  相似文献   

6.
It has been postulated that the central auditory system contains an array of modulation filters, each responsive to a different range of modulation frequencies present at the outputs of the (peripheral) auditory filters. In the present experiments, we tested what we call the "dip hypothesis," that a gap in modulation is detected using the "dip" in the output of the modulation filter tuned to the modulator frequency. In experiment 1, the task was to detect a gap in the sinusoidal amplitude modulation imposed on a 4-kHz carrier. The modulator preceding the gap ended with a positive-going zero-crossing. There were three conditions, differing in the phase at which the modulator started at the end of the gap; zero-phase, at a positive-going zero-crossing; pi-phase, at a negative-going zero-crossing; and "preserved" phase, at the phase the modulator would have had if it had continued without interruption. Modulation frequencies were 5, 10, 20, and 40 Hz. Psychometric functions for detection of the gap were measured using a two-alternative forced-choice task. For the zero-phase and preserved-phase conditions, the detectability index, d', increased monotonically with increasing gap duration. For the pi-phase condition, performance was good (d' > 1) for small gap durations, and initially worsened with increasing gap duration, before improving again for longer gap durations. This is the pattern of results expected from the dip hypothesis, provided that the modulation filters have Q values of 2 or more. However, it is also possible that a rhythm cue was used to improve performance in the pi-phase condition for short gap durations; the introduction of the gap markedly disrupted the regular rhythm produced by the modulator peaks. In experiment 2, the rhythm cue was disrupted by varying the modulator period randomly around its nominal value, except for the modulator periods immediately before and after the gap. This markedly impaired performance, and resulted in psychometric functions that were very similar for the zero-phase and pi-phase conditions. This pattern of results is inconsistent with the dip hypothesis. For both experiments, modulation gap "thresholds" (d' approximately 1) were roughly constant when expressed as a proportion of the modulator period. Possible mechanisms of modulation gap detection are discussed and evaluated.  相似文献   

7.
Three experiments tested listeners' ability to identify 70 diverse environmental sounds using limited spectral information. Experiment 1 employed low- and high-pass filtered sounds with filter cutoffs ranging from 300 to 8000 Hz. Listeners were quite good (>50% correct) at identifying the sounds even when severely filtered; for the high-pass filters, performance was never below 70%. Experiment 2 used octave-wide bandpass filtered sounds with center frequencies from 212 to 6788 Hz and found that performance with the higher bandpass filters was from 70%-80% correct, whereas with the lower filters listeners achieved 30%-50% correct. To examine the contribution of temporal factors, in experiment 3 vocoder methods were used to create event-modulated noises (EMN) which had extremely limited spectral information. About half of the 70 EMN were identifiable on the basis of the temporal patterning. Multiple regression analysis suggested that some acoustic features listeners may use to identify EMN include envelope shape, periodicity, and the consistency of temporal changes across frequency channels. Identification performance with high- and low-pass filtered environmental sounds varied in a manner similar to that of speech sounds, except that there seemed to be somewhat more information in the higher frequencies for the environmental sounds used in this experiment.  相似文献   

8.
Several listening conditions show that energy remote from a target frequency can deleteriously affect sensitivity. One interpretation of such results entails a wideband analysis involving a wide predetection filter. The present study tested the hypothesis that both temporal gap detection and overshoot results are consistent with a wideband analysis, as contrasted with statistical combination of information across independent channels. For gap detection, stimuli were random or comodulated 50-Hz-wide noise bands centered on 1000, 1932, 3569, and 6437 Hz. For overshoot, the masker was an 8-kHz low-pass filtered noise, with 5-ms tone bursts presented at the same center frequencies used for gap detection. Signals were presented with either 0- or 250-ms delay after masker onset. In each paradigm, the target was introduced at only one frequency or at all four frequencies. Results from gap detection conditions did not favor a wideband analysis interpretation: Results in the random condition were consistent with an optimal combination of cues across frequency. An across-channel interference effect was also evident when only one of the four bands contained the gap. Although results from the overshoot conditions were consistent with a wideband analysis interpretation, they were more parsimoniously accounted for in terms of statistical combination of information.  相似文献   

9.
Modulation masking: effects of modulation frequency, depth, and phase   总被引:1,自引:0,他引:1  
Modulation thresholds were measured for a sinusoidally amplitude-modulated (SAM) broadband noise in the presence of a SAM broadband background noise with a modulation depth (mm) of 0.00, 0.25, or 0.50, where the condition mm = 0.00 corresponds to standard (unmasked) modulation detection. The modulation frequency of the masker was 4, 16, or 64 Hz; the modulation frequency of the signal ranged from 2-512 Hz. The greatest amount of modulation masking (masked threshold minus unmasked threshold) typically occurred when the signal frequency was near the masker frequency. The modulation masking patterns (amount of modulation masking versus signal frequency) for the 4-Hz masker were low pass, whereas the patterns for the 16- and 64-Hz maskers were somewhat bandpass (although not strictly so). In general, the greater the modulation depth of the masker, the greater the amount of modulation masking (although this trend was reversed for the 4-Hz masker at high signal frequencies). These modulation-masking data suggest that there are channels in the auditory system which are tuned for the detection of modulation frequency, much like there are channels (critical bands or auditory filters) tuned for the detection of spectral frequency.  相似文献   

10.
11.
Auditory processing appears to include a series of domain-specific filtering operations that include tuning in the audio-frequency domain, followed by tuning in the temporal modulation domain, and perhaps tuning in the spectral modulation domain. To explore the possibility of tuning in the spectral modulation domain, a masking experiment was designed to measure masking patterns in the spectral modulation domain. Spectral modulation transfer functions (SMTFs) were measured for modulation frequencies from 0.25 to 14 cycles/octave superimposed on noise carriers either one octave (800-1600 Hz, 6400-12,800 Hz) or six octaves wide (200-12,800 Hz). The resulting SMTFs showed maximum sensitivity to modulation between 1 and 3 cycles/octave with reduced sensitivity above and below this region. Masked spectral modulation detection thresholds were measured for masker modulation frequencies of 1, 3, and 5 cycles/octave with a fixed modulation depth of 15 dB. The masking patterns obtained for each masker frequency and carrier band revealed tuning (maximum masking) near the masker frequency, which is consistent with the theory that spectral envelope perception is governed by a series of spectral modulation channels tuned to different spectral modulation frequencies.  相似文献   

12.
It has been proposed that the detection of frequency modulation (FM) of sinusoidal carriers can be mediated by two mechanisms; a place mechanism based on FM-induced amplitude modulation (AM) in the excitation pattern, and a temporal mechanism based on phase locking in the auditory nerve. The temporal mechanism appears to be "sluggish" and does not play a role for FM rates above about 10 Hz. It also does not play a role for high carrier frequencies (above about 5 kHz). This experiment provided a further test of the hypothesis that the effectiveness of the temporal mechanism depends upon the time spent close to frequency extremes during the modulation cycle. Psychometric functions for the detection of AM and FM were measured for two carrier frequencies, 1 and 6 kHz. The modulation waveform was quasitrapezoidal. Within each modulation period, P, a time Tss was spent at each extreme of frequency or amplitude. The transitions between the extremes, with duration Ttrans had the form of a half-cycle of a cosine function. The modulation rate was 2, 5, 10, or 20 Hz, giving values of P of 500, 200, 100, and 50 ms. TSS varied from 0 ms (sinusoidal modulation) up to 160, 80, 40, or 20 ms, for rates of 2, 5, 10, and 20 Hz, respectively. The detectability of AM was not greatly affected by modulation rate or by the value of TSS, except for a slight improvement with increasing TSS for the lowest modulation rates; this was true for both carrier frequencies. For FM of the 6-kHz carrier, the pattern of results was similar to that found for AM, which is consistent with an excitation-pattern model of FM detection. For FM of the 1-kHz carrier, performance improved markedly with increasing TSS, especially for the lower FM rates; there was no change in performance with TSS for the 20-Hz modulation rate. The results are consistent with the idea that detection of FM of a 1-kHz carrier is partly mediated by a sluggish temporal mechanism. That mechanism benefits from greater time spent at frequency extremes of the modulation cycle for rates up to 10 Hz.  相似文献   

13.
The four experiments reported here measure listeners' accuracy and consistency in adjusting a formant frequency of one- or two-formant complex sounds to match the timbre of a target sound. By presenting the target and the adjustable sound on different fundamental frequencies, listeners are prevented from performing the task by comparing the absolute or relative levels of resolved spectral components. Experiment 1 uses two-formant vowellike sounds. When the two sounds have the same F0, the variability of matches (within-subject standard deviation) for either the first or the second formant is around 1%-3%, which is comparable to existing data on formant frequency discrimination thresholds. With a difference in F0, variability increases to around 8% for first-formant matches, but to only about 4% for second-formant matches. Experiment 2 uses sounds with a single formant at 1100 or 1200 Hz with both sounds on either low or high fundamental frequencies. The increase in variability produced by a difference in F0 is greater for high F0's (where the harmonics close to the formant peak are resolved) than it is for low F0's (where they are unresolved). Listeners also showed systematic errors in their mean matches to sounds with different high F0's. The direction of the systematic errors was towards the most intense harmonic. Experiments 3 and 4 showed that introduction of a vibratolike frequency modulation (FM) on F0 reduces the variability of matches, but does not reduce the systematic error. The experiments demonstrate, for the specific frequencies and FM used, that there is a perceptual cost to interpolating a spectral envelope across resolved harmonics.  相似文献   

14.
The ability to detect the existence of amplitude modulation at a target frequency is reduced when amplitude modulation exists at a flanking frequency. This effect has been termed modulation detection interference (MDI) [Yost and Sheft, J. Acoust. Soc. Am. 85, 848-857 (1989)]. One explanation for MDI holds that the masking and target frequencies are grouped together by the auditory system such that it is difficult to analyze the modulation at each frequency separately. The present study investigated conditions where the asynchrony of temporal gating of the target and flanking frequencies was manipulated in order to make the frequencies more or less likely to be grouped together by the auditory system and perceived as originating from a single putative source. A second experimental manipulation attempted to perceptually segregate the masking and target frequencies on the basis of harmonicity or spectral proximity. The results of the experiments indicated that manipulations that were intended to enhance the segregation of the masking and target frequencies reduced the magnitude of MDI effects. This generally supported an interpretation that MDI is related in some way to auditory grouping. A final experiment was performed in which the subject had to detect the presence of amplitude modulation, but also had to identify which of two frequency components carried the modulation. Subjects were often poor in discriminating which of two frequencies was amplitude modulated, even when the modulation itself was clearly audible. It was concluded that part of the MDI effect might be due to the poor ability of the auditory system to associate modulation with the carrier of the modulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
As part of an ongoing study of auditory aging, detection of sinusoidal and quasitrapezoidal frequency modulation (FM) was measured with a 5-Hz modulation frequency and 500- and 4000-Hz carriers in two experiments. In Experiment 1, psychometric functions for FM detection were measured with several modulation waveform time patterns in younger adults with normal hearing. Detection of a three-cycle modulated signal improved when its duration was extended by a preceding unmodulated cycle, an effect similar to adding a modulated cycle. In Experiment 2, FM detection was measured for younger and older adults with normal hearing using two psychophysical methods. Similar to frequency discrimination, FM detection was poorer in older than younger subjects and age-related differences were larger at 500 Hz than at 4000 Hz, suggesting that FM detection with low modulation frequencies and frequency discrimination may share common underlying mechanisms. One mechanism is likely related to temporal information coded by neural phase locking which is strong at low frequencies and decreases with increasing frequency, as observed in animals. The frequency-dependent aging effect suggests that this temporal mechanism may be affected by age. The effect of psychophysical method was sizable and frequency dependent, whereas the effect of modulation waveform was minimal.  相似文献   

16.
An acoustic pointing task was used to measure extents of laterality produced by combinations of ongoing envelope-based interaural temporal disparities (ITDs) and interaural intensitive disparities (IIDs) of 4-kHz-centered raised-sine stimuli [Bernstein and Trahiotis, J. Acoust. Soc. Am. 125, 3234-3242 (2009),] while varying, parametrically, their peakedness, depth of modulation, and frequency of modulation. The study was designed to assess whether IIDs act as "weights" within the putative "binaural display" at high spectral frequencies (where the envelopes convey ITD-information) as appears to be the case at low spectral frequencies (where the waveforms, i.e., fine-structure and envelopes, convey ITD-information). The data indicate that envelope-based IIDs do principally act as weights and that they appear to exert their influence on lateral position independently of the influence of ITDs. Quantitative analyses revealed that an augmented form of the cross-correlation-based "position-variable" model of Stern and Shear [J. Acoust. Soc. Am. 100, 2278-2288 (1996)] accounted for 94% of the variance in the data. This success notwithstanding, for a small subset of the data, predictions could be improved by assuming that the listeners utilized information within auditory filters having center frequencies above 4 kHz.  相似文献   

17.
Two experiments were performed to test the concept that the auditory system contains a "modulation filter bank" (MFB). Experiment 1 examined the ability to "hear out" the modulation frequency of the central component of a three-component modulator applied to a 4-kHz sinusoidal carrier. On each trial, three modulated stimuli were presented. The modulator of the first stimulus contained three components. Within a run the frequencies of the outer two components were fixed and the frequency of the central ("target") component was drawn randomly from one of five values. The modulators of second and third stimuli contained one component. One had a frequency equal to that of the target and the other had a frequency randomly selected from one of the other possible values. Subjects indicated whether the target corresponded to the second or third stimulus. Scores were around 80% correct when the components in the three-component modulator were widely spaced and when the frequencies of the target and comparison differed sufficiently. Experiment 2 examined the ability to hear a change in the relative phase of the components in a three-component modulator with harmonically spaced components, using a 31FC task. The frequency of the central component, f(c), was either 50 or 100 Hz. Scores were 80%-90% correct when the component spacing was < or = 0.5 f(c), but decreased markedly for greater spacings. Performance was only slightly impaired by randomizing the overall modulation depth from one stimulus to the next. The results of both experiments are broadly consistent with what would be expected from a MFB with a Q value of 1 or slightly less.  相似文献   

18.
Three experiments measured the perceived continuity of two pure tones "flankers" through a masker containing a silence. Experiment 1 used a 2I-2AFC procedure; one interval contained two noise bursts separated by a silent gap, and the other contained two noise bursts separated by a tone of the same duration as the silence. Discrimination between masker conditions was very accurate when the flankers were absent but was impaired substantially when the flankers were present. This was taken as evidence that illusory flanker continuity during the silent gap was heard as similar to the physical presence of a tone in the gap. In experiment 2, performance remained poor when the flankers were frequency glides aligned along a common trajectory. Performance improved significantly when the flankers were misaligned in trajectory. In experiment 3, listeners rated directly perceived flanker continuity. Strong continuity was reported in the silent gap conditions for which poor performance had been observed in experiments 1 and 2. These findings show that continuity may be heard through a masker that cannot mask a physically continuous tone but can mask the flankers' offset and onset. The results are explained in terms of the perceptual grouping of onsets and offsets of the flankers.  相似文献   

19.
In this study the perception of the fundamental frequency (F0) of periodic stimuli by cochlear implant users is investigated. A widely used speech processor is the Continuous Interleaved Sampling (CIS) processor, for which the fundamental frequency appears as temporal fluctuations in the envelopes at the output. Three experiments with four users of the LAURA (Registered trade mark of Philips Hearing Implants, now Cochlear Technology Centre Europe) cochlear implant were carried out to examine the influence of the modulation depth of these envelope fluctuations on pitch discrimination. In the first experiment, the subjects were asked to discriminate between two SAM (sinusoidally amplitude modulated) pulse trains on a single electrode channel differing in modulation frequency ( deltaf = 20%). As expected, the results showed a decrease in the performance for smaller modulation depths. Optimal performance was reached for modulation depths between 20% and 99%, depending on subject, electrode channel, and modulation frequency. In the second experiment, the smallest noticeable difference in F0 of synthetic vowels was measured for three algorithms that differed in the obtained modulation depth at the output: the default CIS strategy, the CIS strategy in which the F0 fluctuations in the envelope were removed (FLAT CIS), and a third CIS strategy, which was especially designed to control and increase the depth of these fluctuations (F0 CIS). In general, performance was poorest for the FLAT CIS strategy, where changes in F0 are only apparent as changes of the average amplitude in the channel outputs. This emphasizes the importance of temporal coding of F0 in the speech envelope for pitch perception. No significantly better results were obtained for the F0 CIS strategy compared to the default CIS strategy, although the latter results in envelope modulation depths at which sub-optimal scores were obtained in some cases of the first experiment. This indicates that less modulation is needed if all channels are stimulated with synchronous F0 fluctuations. This hypothesis is confirmed in a third experiment where subjects performed significantly better in a pitch discrimination task with SAM pulse trains, if three channels were stimulated concurrently, as opposed to only one.  相似文献   

20.
Cochlear implants provide users with limited spectral and temporal information. In this study, the amount of spectral and temporal information was systematically varied through simulations of cochlear implant processors using a noise-excited vocoder. Spectral information was controlled by varying the number of channels between 1 and 16, and temporal information was controlled by varying the lowpass cutoff frequencies of the envelope extractors from 1 to 512 Hz. Consonants and vowels processed using those conditions were presented to seven normal-hearing native-English-speaking listeners for identification. The results demonstrated that both spectral and temporal cues were important for consonant and vowel recognition with the spectral cues having a greater effect than the temporal cues for the ranges of numbers of channels and lowpass cutoff frequencies tested. The lowpass cutoff for asymptotic performance in consonant and vowel recognition was 16 and 4 Hz, respectively. The number of channels at which performance plateaued for consonants and vowels was 8 and 12, respectively. Within the above-mentioned ranges of lowpass cutoff frequency and number of channels, the temporal and spectral cues showed a tradeoff for phoneme recognition. Information transfer analyses showed different relative contributions of spectral and temporal cues in the perception of various phonetic/acoustic features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号